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Pricing Technological Innovators:

Patent Intensity and Life-Cycle Dynamics

Abstract

Technological innovators are priced differently from other firms, earning

higher stock returns controlling for standard factors, with less punishment

for aggressive capital investment and weak profitability. We create the new

variable patent intensity (PI), patents received divided by market capital-

ization, available from 1926. On average, high-PI firms comprise ten percent

of aggregate market capitalization but over half of five-year-forward public-

company patenting. Aged portfolios and standard factors show significant

alphas a decade post-formation. Adding an expected growth factor, alphas

disappear and loadings display life-cycle dynamics: high, declining growth;

aggressive, increasing investment; and weak, improving profitability.

Keywords : technological innovation, patent intensity, stock returns, firm

life-cycle, risk dynamics.

JEL Classification: G12, E20.



1. Introduction

Innovation invigorates firms, unlocking new product markets, efficiencies, and possi-

bilities for follow-on discovery, while simultaneously transforming the economy and

propelling it forward (Schumpeter, 1911).1 As famously hypothesized by Nelson (1959)

and Arrow (1962), private required returns to innovation may be inefficiently high af-

ter accounting for large societal benefits. Importantly, Arrow also pointed to sizeable

absolute risks, stating “By the very definition of information, invention must be a risky

process...” (p. 616). Subsequent research documents specific channels that might cause

high costs of capital for innovators, including extremely uncertain outcomes (Scherer,

1998), embedded real options that leverage risk (Berk, Green, and Naik, 2004), and

financing frictions such as information asymmetry (Hall, 2002, Hall and Lerner, 2010).

Do innovators in fact have higher returns than non-innovators, and do standard

asset pricing models capture these differences? Our study answers these questions. Of

particular note, while innovation entails change, leading empirical models of expected

returns invoke static or steady-state valuation models to motivate fundamental pricing

factors based on market/book ratios (Tobin’s q), capital investment, and profitability

(Fama and French, 1993, 2015, Hou, Xue, and Zhang, 2015).2 These models’ founda-

tions in steady-state valuation appear at odds with the dynamic nature of economically

important innovative firms.

We provide new facts about the returns and risk of innovative firms, emphasizing dy-

namics and sources of mispricing. Motivated by life-cycle theories (e.g., Klepper, 1996,

Klette and Kortum, 2004), we investigate the evolution of returns, characteristics, risk

loadings, and abnormal performance (alpha) for both innovators and non-innovators.

Consistent with the prior hypotheses of Hall and Lerner (2010), innovative firms do have

high returns, lasting more than a decade after portfolio formation. Further, standard

1See also Solow (1957), Romer (1986, 1990), and Aghion and Howitt (1992).
2See Fama and French (1995) equation 2, Fama and French (2015) equation 3, Hou, Xue, and Zhang

(2015) equation 1. Berk (1995) provides a related valuation identity motivating size-related anomalies.
The market/book ratio as a driver of investment is developed in Tobin (1958).
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pricing models derived from static valuation (Fama and French, 2015, Hou, Xue, and

Zhang, 2015) severely and persistently misprice innovators, producing larger alpha than

raw-return spreads. We trace mispricing to innovators covarying with investment and

profitability factors but not receiving commensurate returns: Investment and profitabil-

ity anomalies are driven by non-innovative firms, and are not present among innovators.

The expected growth factor of Hou, Mo, Xue, and Zhang (2021), built from forecasts

of two-year asset growth using accounting variables, resolves innovator mispricing. In-

novators load heavily on this factor for a full decade, consistent with innovation driving

expected growth, as in Kogan, Papanikolaou, Seru, and Stoffman (2017). Our study

thus provides a coherent empirical framework that connects technological innovation,

expected growth, and expected returns as they evolve through the life-cycle of inno-

vative firms. We highlight shortcomings as well as improvements in leading empirical

asset pricing models while also providing new facts about technological-innovator ex-

pected returns, a question of long-standing interest and importance (Hall and Lerner,

2010).

Our analysis is based on a simple, new measure of technological innovation, patent

intensity (PI), defined as the ratio of the number of patents received in the past twelve-

month period divided by current market capitalization. The measure is easy to calcu-

late, requires no accounting data, and extends back to 1926. From the point of view of

a speculator or investor, PI ranks firms according to their patents produced per invest-

ment dollar. High-PI portfolios give the cheapest way to purchase equity interest in

the recently produced public-market patent stock and its stream of future rents. Given

persistent firm-level patenting, high-PI portfolios also approximate the cheapest way to

purchase public equity claims to future patent grants.

We relate patent intensity to theories of innovation heterogeneity and investment

frictions. Innovation-heterogeneity theories (Klepper, 1996, Akcigit and Kerr, 2018)

hold that firms with valuable existing assets should innovate differently from other

firms, motivated by increasing the value of their existing assets through less risky “pro-

2



cess” or “inside” innovations.3 In contrast, firms without valuable existing assets should

invest proportionally more in riskier directions, such as new product markets, consis-

tent with empirical evidence (Cohen and Klepper, 1996). If we break technological

innovators into two groups by patent intensity, we hypothesize that low-PI firms are

older, larger, with valuable and profitable assets in place, and lower-risk innovation. By

contrast, we hypothesize that high-PI firms are younger, smaller, with less valuable and

profitable assets in place, and riskier innovation. Frictions in innovation financing (Hall

and Lerner, 2010) also yield predictions for the returns of low- and high-intensity inno-

vators. Low-PI firms are likely to have valuable and profitable assets-in-place, enabling

internal cash-flow funding. High-PI firms lack such internal funding, increasing financ-

ing frictions. Patent intensity therefore captures key elements of theories of innovation

heterogeneity and financing frictions.

Patent-intensity sorted portfolios produce a significant spread in returns of approx-

imately seven percent annually. A positive and statistically significant return spread

remains for ten years following portfolio formation, consistent with high costs of cap-

ital for innovators. Accounting for standard fundamentals-based factors, alphas are

large and statistically significant for a full decade after portfolio formation. We trace

these large and persistent alphas to the fact that innovators are not penalized for lack

of profitability or high investment to the same degree as non-innovators. The most

innovation-intensive firms tend to have high asset growth and low profitability risk

loadings. Since innovators are not penalized for this covariation to the same extent as

non-innovators, their alphas increase when benchmarked to the steady-state models.

Hou, Mo, Xue, and Zhang (2021, HMXZ) augment the q4 model of HXZ with an ex-

pected growth factor, targeted at capturing influences on expected returns in a dynamic

model that are not present in a static model.4 This factor could address technologi-

3Early work includes Utterback and Abernathy (1975) and Abernathy, Utterback, et al. (1978).
Dasgupta and Stiglitz (1980) discuss how market structure influences the nature of innovation in a
static setting. Bena, Garlappi, and Grüning (2016) examine incremental and radical innovations in
a dynamic “horse race” setting. Bustamente and Zucchi (2022) study explorative versus exploitative
innovation in a model of industry equilibrium.

4See their equation 1.
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cally innovative firms and their life-cycle dynamics. We find that the HMXZ expected

growth factor eliminates abnormal returns of patent-intensity sorted portfolios, not

only immediately after formation, but at nearly all horizons up to ten years. Our study

therefore supports the importance of expected growth for asset pricing as proposed by

HMXZ. Unlike standard characteristic-based factors, their expected growth factor is

not built directly from simple ratios of a firm’s own characteristics, but instead uses

rolling forecasting regressions of growth rates on lagged variables.5 The importance of

their factor should spur further research on modeling expected growth and its relation

to cost-of-capital.

Risk dynamics further elaborate the technological innovator life cycle. High-PI firms

load heavily on expected growth immediately following formation, and over time their

expected growth loadings fall. Even a decade after formation, the growth loadings of in-

novators significantly exceed those of non-innovators. Investment loadings of innovators

are initially somewhat aggressive, and become much more so within two to three years

following formation. Investment loadings remain more aggressive than non-innovators

for a full decade. Finally, innovators show weak profitability loadings immediately after

formation, but these strengthen substantially over the following decade. Thus, risk

dynamics reveal a technological-innovator life cycle of sequential growth, investment,

and profitability.

The explosion in variety of empirical asset pricing models has generated the critique

of “too many” models (Cochrane, 2011). An important branch of research uses sta-

tistical techniques to select and combine predictors (Barillas and Shanken, 2018, Gu,

Kelly, and Xiu, 2020). An equally important tradition founds empirical asset pricing

models on internally consistent economic frameworks. Streams of work by Fama and

French (“FF”) and HXZ and their co-authors follow this approach (see footnotes 2

and 4), and the connection of their factors to economically intuitive firm fundamentals

explains their enduring popularity. We add to this tradition by showing that technolog-

5HMXZ use panels of firm-year data to obtain linear forecasts with time-varying coefficients. The
underlying variables used in their regressions are the market-to-book ratio, operating cash flows, and
recent changes in return-on-equity.
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ical innovators are mispriced by static versions of the HXZ and FF models for a decade

following portfolio formation, but that accounting for dynamics with the HMXZ ex-

pected growth factor resolves mispricing. Further, factor loadings capture economically

important aspects of innovator life-cycle dynamics.

We contribute to the broad literature on technological innovation and the stock

market. Among these, a key contribution is Kogan, Papanikolaou, Seru, and Stoffman

(2017, KPSS), who measure stock-price impacts in short windows following patent-grant

announcements. Following the literature on innovation heterogeneity (e.g., Klepper,

1996, Akcigit and Kerr, 2018), firms with valuable assets in place should engage in more

certain “inside” innovation, while firms without valuable existing product markets must

engage in riskier and harder to value “outside” innovation. Our research complements

KPSS by showing the long-run as opposed to immediate effects of innovation on stock

returns. Further, KPSS emphasize the relation of innovation to firm growth. We add

additional evidence on the dynamics of expected growth loadings, and that accounting

for expected growth is necessary to obtain accurate costs of capital for innovators within

fundamentals-based pricing models.

Relative to the broader literature on innovation and asset pricing,6 we develop a

new measure of innovation intensity based on patents, and show the dynamics of re-

turns, characteristics, risk loadings, and alphas for fundamentals-based pricing models

with and without expected growth. Prior literature hypothesizes naturally high and

difficult to measure costs of capital for innovators (Arrow, 1962, Hall and Lerner, 2010).

We provide robust evidence of the hypothesized high costs of capital for innovators, in

both raw returns and relative to standard benchmarks. We further show that account-

6Research emphasizing the roles of patenting and R&D includes Lev and Sougiannis (1996), Eber-
hart, Maxwell, and Siddique (2004), Gu (2005), Cohen, Diether, and Malloy (2013), Hirshleifer, Hsu,
and Li (2013), Hirshleifer, Hsu, and Li (2018), Bena and Garlappi (2020), Kelly, Papanikolaou, Seru,
and Taddy (2021), and Stoffman, Woeppel, and Yavuz (2022). Theoretical and empirical foundations
of the connection between technological growth and asset prices include Greenwood and Jovanovic
(1999), Hobijn and Jovanovic (2001), Pástor and Veronesi (2009), Kogan and Papanikolaou (2010,
2013, 2014), Kogan, Papanikolaou, and Stoffman (2020), Papanikolaou (2011), Garleanu, Panageas,
and Yu (2012), Kung and Schmid (2015), Garlappi and Song (2017). Innovation and innovation ca-
pacity also relate most generally to intangible capital (Crouzet, Eberly, Eisfeldt, and Papanikolaou,
2022).
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ing for expected growth is necessary to accurately estimate expected returns. Finally,

an important property of innovation is its persistence. Portfolios formed on patent in-

tensity have low turnover, and their return spread lasts ten full years following portfolio

formation, presenting a significant challenge to asset pricing models.

Previous work has shown positive abnormal returns over shorter samples for R&D-

sorted portfolios (Chan, Lakonishok, and Sougiannis, 2001, Hou, Mo, Xue, and Zhang,

2021). These studies exclude firms with missing or zero R&D, comprising on average

half of firms by market capitalization, possibly because of uncertainty over interpreation

of missing R&D data. Patent counts do not have missing data, and we categorize every

firm with no patents as a “non-innovator”. Further, patent intensity does not rely on

accounting data, and can be measured over a much longer sample beginning in 1926.

We show however that patent intensity and R&D intensity are closely related over the

period over which they can both be measured, with the primary difference being a

larger loading on expected growth for patent intensity. Future work should continue to

investigate the relationship between R&D and patenting as in Hirshleifer, Hsu, and Li

(2013).

Innovating firms have played an important role in the US stock market that can be

measured over almost a full century. While the firms and industries that dominated

the innovative landscape have varied over time, from manufacturing firms in the mid-

20th century to computer and information technology companies in the most recent

two decades, the overall share of innovators in the US stock market has remained re-

markably constant. Throughout the 1926-2021 sample period, innovators accounted for

approximately 45-75% of total US-market capitalization, with no apparent trend. Inno-

vators are therefore critical to our understanding of asset pricing, and their valuations

ultimately affect economy-wide capital allocation and growth.
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2. Technological Innovators and Patent Intensity

This section first shows strong connections between publicly listed firms and total

patenting activity in the United States from 1926. We define our main variable, patent

intensity (PI), and characterize differences between more and less patent-intensive firms.

The patent data we use in our study, and procedures for merging with CRSP and

Compustat data, are standard. The United States Patent & Trademark Office (USPTO)

provides complete patent data, with downloadable text starting in 1976.7 For patents

filed between 1926-1975, Kelly, Papanikolaou, Seru, and Taddy (2021) provide cleaned

and tabulated data from USPTO image files.8 Combining these two sources covers all

U.S. patents issued from 1926-2021. We link patents to public companies using CRSP

permno-patent links from Kogan, Papanikolaou, Seru, and Stoffman (2017).9

2.1. Public company innovators

Patenting by publicly traded companies allows investors to easily purchase equity claims

on technological progress. Observable prices reflect the market’s valuation of innovation.

Our paper further argues that technological innovation plays a key role in asset pricing,

specifically for firm returns and risk. We therefore first show that public companies are

important to total patenting activity. Second, and conversely, technologically innovative

firms comprise a substantial portion of the public company universe throughout our

sample.

Figure 1, Panel A, shows annual patent counts beginning in 1926 for i) the entire

patent sample, ii) the subsample of patents in which the assignee matches at the time of

granting a CRSP firm that trades on the NYSE, AMEX, or Nasdaq exchanges, and iii)

a smaller subsample restricted to US-based CRSP assignees (shrcd is 10 or 11). Panel

B shows for the two subsamples their annual shares of all patents awarded. For most

7https://patentsview.org/download/data-download-tables.
8https://github.com/KPSS2017/Measuring-Technological-Innovation-Over-the-Long-Run

-Replication-Kit.
9https://github.com/KPSS2017/Technological-Innovation-Resource-Allocation-and-Gro

wth-Replication-Kit.
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of the past century, US-based CRSP assignees comprise from twenty to forty percent of

U.S. patenting.10 Thus, the public companies commonly used in empirical asset pricing

studies are important to technological progress.

Conversely, technologically innovative firms are important to the standard CRSP

sample of US-based firms traded on the three major exchanges. Each year on June 30

we classify firms as “innovators” or “non-innovators” based on whether they received a

patent in the prior 12-month period.11 Patent-based classification of technological inno-

vators is natural since patents are standardized and tangible legal claims with uniform

and immediate reporting by the USPTO. Figure 1, Panels C-F show the importance

of technological innovators to the CRSP universe of publicly traded firms over the

past century. The innovator share by firm count (Panels C-D) ranges from twenty to

fifty percent with sharp fluctuations. The innovators share by market capitalization

(Panels E-F) ranges from fifty to seventy-five percent, and appears slow-moving and

mean-reverting. Our main results use value-weighted portfolios, so the large and stable

market-capitalization weighted shares of innovators are most relevant.

The sectoral composition of innovative and non-innovative firms changes over time.

Figure 2, Panels A and B respectively decompose the value-weighted portfolios of in-

novative and non-innovative firms into ten Fama-French industries. In the innovator

portfolio, the allocations to manufacturing and consumer durables decrease over time,

while business equipment and healthcare increase. Technological innovation therefore

concentrates in different sectors of the economy throughout the sample, as expected.

10Toward the end of the sample, the difference between all CRSP assignees and U.S.-based CRSP
assignees is due to growing importance of cross-listed foreign firms that receive U.S. patents.

11The USPTO publishes its Official Gazette every Tuesday with information on patents granted
that day, so patent information is immediately observable. See https://www.uspto.gov/learning

-and-resources/official-gazette. Links from patent assignees to CRSP firms are reliable, but
linking assignees to pre-IPO firms is more challenging. We therefore drop firms from our analysis that
have less than a twelve-month CRSP history. Throughout the paper, we use a twelve-month lookback
period for patent counts to prevent mechanical persistance from overlapping windows. Our results are
however robust to alternatives such as two- or three-year windows for patent counts.
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2.2. Patent intensity

On June 30 of every year, for each CRSP firm we define patent intensity (PI) as the

ratio of patents received in the prior twelve months divided by current CRSP market

capitalization. Using a one-year window for patents prevents mechanical persistence,

and our results are robust to using longer windows. (See Section 5.) Scaling by market

capitalization reflects the logic of theories of investment heterogeneity where firms inno-

vate differently depending whether or not they have valuable assets in place (Klepper,

1996, Akcigit and Kerr, 2018). Purchasing equity in high-PI firms gives, per dollar

invested, concentrated exposure to recent patenting activity. Scaling by market capi-

talization also mirrors prior measures such as the book-to-market ratio, which can be

thought of as a measure of asset intensity.

Each year we sort firms into three groups. Non-innovators (group zero) have no

patents in the prior twelve month period. Low- and high-intensity innovators (groups

one and two) are obtained by dividing all innovators at the median PI break point,

forming two equal-sized groups by firm count. Table 1 provides descriptive statistics

for the three groups, revealing important differences. Panel A shows the average shares

of each group according to firm count, market capitalization, past patenting, and future

patenting. Most firms (68% on average) are non-patenters. Nonetheless, the 32% of

patenting firms contribute the majority of market capitalization, 65% in an average

year. The concentration of market capitalization is even stronger across the high- and

low-PI groups. The low PI group, while only 16% by firm count, contributes 54% of

total market capitalization. The high-PI group, again 16% by firm count, contributes

only 11% of total market capitalization.

It would be a tremendous mistake to conclude that the high-PI group is inconse-

quential because of its small market capitalization. The high-PI group owns on average

62.5% of the universe of patents created by public firms in the prior year, and has legal

claim to the technological progress and stream of rents thereby created. Moreover, their

patenting activity is persistent. The high-PI group contributes 60% of patents granted
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to the sample in the following year, 58% in the next three years, and 56.5% in the next

five years. With a relatively small allocation of equity capital (11.3% of total market

capitalization), one can purchase concentrated equity interest in the majority of not

only recent but also future public-market patenting activity.

Characteristics of the three groups are also shown in Table 1. These include age and

B/M (Panel A, available from 1926) and profitability and investment (Panel B, available

from 1963). Non-innovators are younger on average and by median than innovators.

This seems to contradict the stereotype of young firms as innovators, but average age

also relates to death rate, which we explore further below. Among innovators, high-PI

are younger than low-PI, consistent with intuition. The B/M ratio is a traditional

measure of “value”, and non-innovators have the highest B/M ratios. Interestingly,

high-intensity innovators appear more value-like than low-intensity innovators. This

should not be too surprising, since both PI and B/M have market capitalization in the

denominator. We consider PI to be a measure of “technological-innovation value”, or

the most cost-efficient way to purchase patenting activity. We return later to further

comparisons of PI with B/M. Considering investment and profitability, low-intensity

innovators have the highest investment rates in physical assets, and the highest prof-

itability. High-intensity innovators on average have the lowest investment in physical

assets and the lowest profitability.

Panel B also shows differences in composition of total assets across the three groups.

High-intensity innovators have less physical capital (PPE = 23.4% vs approximiately

30% for non-innovators and low-intensity innovators), but considerably more current

assets and cash. Thus, high-intensity innovators have less assets-in-place, but their

high levels of working capital and cash can help to fund risky innovation and exercise

of growth opportunities. Low-intensity innovators have the highest level of intangibles,

consistent with prior acquisitions that have created goodwill.

We conclude that patent intensity captures important differences across firms. The

non-innovator archetype is a modestly sized, shorter-lived value firm with moderate

investment and profitability. Low patent-intensity firms are large and long-lived, with
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significant investments in physical assets, high profitability, and high M/B ratios. High-

intensity innovators are young and small, appear as “value” by the B/M measure, invest

less in physical assets and have low profitability, but produce the lion’s share of tech-

nological innovation among listed public firms. Because of these important differences,

we anticipate the pricing of PI-portfolios to be a meaningful challenge for traditional

asset-pricing factors such as size, value, investment, and profitability.

2.3. The life-cycle of innovative firms

One measurable aspect of life-cycle is transition, across patent intensity groups and ex-

iting from the sample. Table 2, Panel A, shows average transition and exit probabilities

across the three PI-groups, at horizons of one, three, and five years. For comparison,

Panel B shows similar probabilities for the B/M ratio, with break points set on a year-

by-year basis identical to the percentiles of the PI-sorts. The break points in Panel B

are calculated conditional on not having a negative or missing book value. Missing or

negative book values are not trivial, 12% of the sample on average, a general difficulty

for accounting-based characteristics that does not apply to patent intensity.

One key finding from Table 2 is that non-innovators exit at a much higher rate than

innovators. At all horizons, non-innovators exit at about twice the rate of low-intensity

innnovators, and 30-50% more frequently than high-intensity innovators. The exit rates

of non-innovators are large even in comparison with the value firms in Panel B (6.1 vs.

2.7%, 16.1 vs. 11.9%, and 24.1 vs. 19.6% at one, three, and five years), despite the

strong link between value and distress (e.g. Garlappi and Yan, 2011). The high delisting

rate of non-innovators helps to explain their low average age shown previously. Many

delistings are negative events, which affects stock performance (Shumway, 1997).

Table 2 also shows that PI sorts are highly persistent. At every horizon, high-

intensity innovators have a greater probability of remaining within their category than

do growth firms, low-intensity innovators have higher staying probabilities than neutral

firms, and non-innovators have higher staying probabilities than value firms. Patent
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intensity is a fundamental and persistent characteristic, even in comparison with the

B/M ratio (or alternatively q).

Another way to document innovator life cycle is to track changes in portfolio char-

acteristics following formation. Figure 3 shows the evolution of PI-sorted portfolio

characteristics for ten years post-formation, value weighting the characteristics in each

year. The panels also show a neutral benchmark that combines all firms into one group.

The characteristics of the aged portfolios are driven by survivorship as in the selection

model of Jovanovic (1982), and also by changes in the survivors. The neutral bench-

mark reflects changes expected from earlier investigations of broad cross-sections of

firms.12 In particular, as the neutral benchmark ages, investment decreases (Panels A

and B), profitability increases (Panels C and D), sales growth decreases (Panel E), and

beta modestly declines (Panel F).

The life-cycle dynamics of PI-sorted portfolios show important differences. In Panels

A and B, for two different measures investment becomes more aggressive in the high-

PI portfolios as they age. In Panels C and D, for two standard measures profitability

improves more rapidly for high-PI than other firms. Panel E shows that sales growth

behaves much like investment, increasing following formation. Finally, In Panel F

market betas show remarkably persistent differences, consistent with the idea that PI

captures fundamental and long-lasting differences between firms. These results reflect

only univariate portfolio characteristics, but suggest important and durable differences

in PI-sorted portfolios that could be important for asset pricing.

3. Patent Intensity and Stock Returns

We show that innovators have higher returns than non-innovators, both in raw returns

and after controlling for standard risk factors. Further, expected growth is crucial to

capture the average returns of innovative firms.

12See for example Dunne, Roberts, and Samuelson (1989), Sutton (1997), and Caves (1998).
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3.1. Portfolio performance

We use two samples in this subsection. The first, full sample, begins in July, 1926.

The second begins in July, 1963 to accommodate performance analysis with the Fama-

French five-factor model, whose investment and profitability factors begin then.

In the full sample, the portfolios are exactly as in the prior section: non-innovators

(no patents, denoted portfolio “0”), low-intensity innovators (lower half of PI sort,

portfolio “1”), and high-intensity innovators (upper half of PI sort, portfolio “2”).

The 1963-2021 period eliminates early years with smaller numbers of firms, so we sort

innovators into four bins with equal numbers of firms. We label these 1-4. The sorts thus

appear numbered as tercile or quintile sorts, but portfolio zero always corresponds to

non-innovators (PI = 0), and positive-numbered portfolios are innovators of increasing

PI. Portfolio HL is a zero-cost portfolio, short the non-patenting portfolio “0” and long

the highest PI portfolio. Table 3 shows value-weighted monthly excess returns (Panel

A), CAPM regressions (Panel B), Fama-French three-factor regressions (Panel C), and

Fama-French five-factor regressions (Panel D). The left-hand side of the table shows

full-sample results and the right-hand side shows the 1963-2021 sample.

In Table 3, Panel A, the annualized average excess returns (monthly returns multi-

plied by twelve) increase monotonically across portfolios in the full sample from 7.76%

for the non-patenting portfolio 0 to 11.91% for the high-PI stocks. The sample starting

in 1963 confirms the increasing average excess returns. The HL portfolio earns econom-

ically and statistically significant returns of about 4.2% over the full sample and 7.1%

over the post-1963 sample. CAPM regressions (Panel B) show market betas slightly

increasing with PI, but not sufficiently to explain returns. The CAPM HL alphas de-

crease relative to raw returns (by 2.4% and 5.3% in full-sample and post-1963), but

remain significantly positive. Controlling for FF3 factors (Panel C) does not substan-

tially change inference about portfolio performance. Among innovators, higher PI is

associated with larger size loadings and somewhat more value than growth.

The HML factor is commonly described as value versus growth, but in the remainder
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of this paper we make the case that high patent intensity portfolios capture key aspects

of value and growth. The construction of patent intensity already suggests a tension in

the traditional value versus growth dichotomy: The patent count numerator appears to

be a natural driver of growth while market capitalization in the denominator suggests

value. Consistent with these countervailing effects, the HML loadings across PI-sorted

portfolios are modest.13 The HML factor cannot explain the returns of technological

innovators.

The FF5 model (Panel D), which adds investment and profitability factors, does

not resolve technological-innovator mispricing. If anything, the difficulties deepen. The

profitability loadings align negatively with PI, opposite the direction needed to explain

PI-sorted returns since the profitability factor earns a positive premium. Investment

loadings increase with PI, but the magnitudes are modest and not statistically signif-

icant. The net effect is a stronger alpha sort than the CAPM or three-factor models,

with a highly significant HL alpha of 6.9%.14

Two additional observations from Table 3 merit attention. First, the empirical

finance literature commonly finds that the short sides of long-short anomaly portfolios

earn the majority of long-short alphas, consistent with the hypothesis of Miller (1977)

on the importance of short-sale constraints.15 In other words, overvaluation is generally

thought to be more of a problem in financial markets than undervaluation, due to the

key role of short-sales constraints in limits to arbitrage. In contrast, the long side of

the patent intensity anomaly delivers well over half of the abnormal returns in both

sample periods and under all benchmarks. This finding is consistent with the long-

standing idea that innovation is risky and hard to value (Hall, 1993, Hall and Hall,

1993). Our second observation is that the short side of the anomaly still matters, and

this portfolio is based on a remarkably simple and robust characteristic. Portfolio 0

13Fama and French (2015) discuss that B/M is most useful in a low-dimensional model, where it
summarizes different sources of variation. In a higher-dimensional model with explicit investment and
profitability factors B/M becomes redundant. See also Hou, Xue, and Zhang (2015).

14The Internet Appendix shows that including a momentum factor as in Fama and French (2018)
has little effect on our results since momentum loadings on the PI-sorted portfolios are small.

15See for example Stambaugh, Yu, and Yuan (2012)

14



consists of the single indicator variable that a firm has not received a patent in the last

year. Though the magnitude of the alpha is economically modest, -1.67% per year for

the five-factor model, it is nonetheless highly statistically significant. Benchmarking to

standard pricing models, non-innovators earn negative abnormal returns and high-PI

firms earn large positive abnormal returns.

3.2. The roles of investment and profitability

We show that variations in investment and profitability do not earn the same premia

for innovative firms as for non-innovative firms. Our approach is to sort within the

groups of all innovators (PI > 0 and three or more patents in last three years) and

all non-innovators (all other firms) on the profitability and investment characteristics.

We create long-short portfolios long the quintile with the highest value of the sorting

variable and short the quintile with the lowest value, irrespective of which side earns

the higher return traditionally. We ask whether the characteristics earn similar return

spreads within the groups of innovators and non-innovators, and compare alphas after

controlling for the FF5 factors.16

Table 4 shows results. For the investment anomaly (Panel A), the return spread

for non-innovators has the familiar negative sign and is statistically significant. The

return spread for innovators is also negative, but lower magnitude and not statistically

significant. The difference in spreads cannot be statistically distinguishedfrom zero.

Controlling for FF5 factors, the alpha difference becomes significantly positive, at 4.7%

p.a. (t = 2.55) driven by a negative loading on investment. Specifically, innovators

have a wider spread in investment loadings than non-innovators, but earn a lower

return spread, resulting in the positive alpha difference. Profitability sorts (Panel B)

display equally interesting differences. Non-innovators show the familiar positive return

spread, 4.33% p.a. (t = 1.91). To the contrary, among non-innovators the return spread

is negative (-2.5% p.a.) but not significant. The return spread difference is consequently

16The Internet Appendix shows similar comparisons for market beta, size, and B/M characteristics.
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large, -6.83% p.a. (t = −3.07). Controlling for the FF5 factors, the HL portfolio for

non-innovators shows no abnormal performance. In contrast, for innovators the HL

alpha is -5.03% p.a. (t = −2.81), reflecting that the portfolio strongly covaries with the

profitability factor (HL loading equals 1.62, t = 11.49) even though profitability does

not earn a return spread among innovators.

These findings help to explain the mispricing of innovators under the FF5 model.

In the aggregate data, the return spreads earned for investment and profitability are

driven more by non-innovators than non-innovators. Innovators have strong variation in

these characteristics, but the return spreads are weaker or even opposite to the overall

population.

3.3. Pricing with q-factors

Motivated by the first-order conditions of an optimizing firm, Hou, Xue, and Zhang

(2015) develop their q4 model with market, size, investment, and profitability factors.17

Their q4 model and Fama and French (2015) are sometimes viewed as competitors, but

for our purposes the similarities are more relevant. Fama and French (2015) also have

market, size, investment, and profitability factors, and acknowledge that their value

factor is largely redundant after accounting for the other four.18 While the q4 and FF5

models may differ in specific cases, the economic motivation and content of the models

are similar.

More distinctly, the q5 model of Hou, Mo, Xue, and Zhang (2021) adds an expected

growth factor, which is new to the literature. This factor captures the idea that a firm’s

current growth may not be a sufficient summary statistic for its future expected growth

17See their equation 4. Earlier literature documents the anomalies related to investment (Titman,
Wei, and Xie, 2004, Cohen, Diether, and Malloy, 2013) and profitability (e.g., Novy-Marx (2013)).

18The characteristics for size and investment are identical in both approaches. If the value factor is
removed, the remaining differences between the two approaches relate to how profitability is defined,
and the sorting procedures used for combining factors.Fama and French (2015) define profitability as
operating profitability scaled by annually updated book equity while Hou, Xue, and Zhang (2015) use
earnings before extraordinary items scaled by quarterly updated book equity. FF use bivariate sorts
on size and profitability and size and investment to form those factors, while HXZ use a trivariate sort
on all three characteristics.
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(see HMXZ equation 1).19 Technological innovation may naturally predict an increase

in growth due to the creation of growth options, either by creating new products or

reducing costs. Empirical evidence for innovation raising growth is provided by Kogan,

Papanikolaou, Seru, and Stoffman (2017), and we should therefore expect technological

innovators to load on the HMXZ expected growth factor.

Table 5, Panel A, shows performance of the PI-sorted portfolios using q4 factors. The

alphas are similar to or stronger than for FF5, increasing monotonically from -1.94% in

portfolio zero to 6.79% in portfolio 4, or 8.73% for the HL portfolio (t = 3.83).20 The q4

loadings are also similar to FF5. For example, investment and particularly profitability

loadings decrease with PI. Thus, q4 presents a very similar picture to FF5, with strong,

positive abnormal performance for technological innovators.

Adding the expected growth factor (EG) of the q5 model in Panel B, the picture

changes. All alphas become statistically insignificant, and the source of the change

is the expected growth factor. Non-patenting firms have a negative loading on EG

(−0.16), and coefficient estimates increase with patent intensity, reaching 0.59 for the

highest PI firms. The expected growth loading of the HL portfolio is 0.75 (t = 5.66),

implying q5-benchmark returns that dramatically increase with PI, exactly as is needed

to explain the portfolio returns. While the remaining q5 alphas still increase with PI,

and the HL alpha is 2.62% p.a., all are statistically indistinguishable from zero. Thus,

expected growth is the key to accurately pricing technological innovators.

3.4. Build-up or resolution?

We have previously argued that technological innovators possess important aspects

of both growth and value, explaining why the traditional B/M ratio, or value versus

growth, does not help to explain technological innovator returns. The most colloquial

meaning of “value” is undervaluation relative to some benchmark. Prior literature notes

19One can also see that expected growth matters in the accounting identity of Fama and French
(2015), allowing for variation in future quantities (see their equation 3).

20In untabulated results, we confirm that the larger alphas relative to FF5 are not driven by the
slightly later start of 1967 that we use in this table to accommodate q5-factors.
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that earning an alpha relative to a benchmark cannot establish relative valuation, since

high returns can either “build-up” or “resolve” valuation discrepancies. Binsbergen,

Boons, Opp, and Tamoni (2021) propose a methodology to distinguish between these

two cases. We apply their methodology, and find that technological innovators are un-

dervalued relative to the CAPM benchmark, nearly as strongly as traditional “value”

firms. This finding, combined with our prior results, supports that technological inno-

vators reflect important aspects of both growth and value.

The methodology of Binsbergen, Boons, Opp, and Tamoni (2021) assumes that the

market portfolio is priced correctly on average over the sample period, given realized

cash flows (dividends) over a fifteen-year period and the terminal value of the market

portfolio in year fifteen. This creates an empirical pricing kernel that can be used to

value other portfolios. Starting in 1963, we estimate the fair market value of anomaly

portfolios, including PI-portfolios, using their dividend discount model and CAPM-

SDF. For comparability with their results, we form our last portfolios in 2002 (final

cash flows in 2017). Portfolios are therefore formed in June of every year from 1963 to

2002. The price wedge of a portfolio is the difference between the actual portfolio price

and the fair market value imputed from the model. In addition to the price wedge at

the time of portfolio formation, we track the portfolios through time until 15 years after

portfolio formation. We track the same group of stocks throughout the 15 years and

keep the endpoint constant, which forces the price wedge to equal zero in year 15. We

carry out this methodology for PI as well as size, value, investment, and profitability

portfolios.

Figure 4 shows estimated price wedges. The top left panel shows the benchmark

market portfolio, and long-short portfolios formed on size, value, investment, and prof-

itability. This reveals an important consideration: The market itself is “misvalued” in

the years after portfolio formation as it ages.21 The long-short portfolios in the top left

corner should not be as strongly affected by this benchmark issue, since it affects both

21The apparent misvaluation of the market at intermediate horizons could be due to autocorrelations
in market returns, or to dropping years of data at the sample beginning in the aged portfolios. For
example, the one-year aged portfolio drops from the valuation of the market all of the 1963 data.
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the long and short sides. Consistent with the results of Binsbergen, Boons, Opp, and

Tamoni (2021), the profitability anomaly is a “build-up” anomaly, and the other anoma-

lies are “resolution,” or reduction of existing mispricing. The top right panel of Figure 4

shows separate price wedges for the long and short sides of each traditional anomaly. To

avoid the benchmark issue shown by the market portfolio, we display price-wedge dif-

ferences, subtracting from each anomaly price wedge the market-portfolio price wedge.

We observe potentially important differences in the direction of mispricing and speed of

resolution: for example, small stocks have a small undervaluation wedge that dissipates

quickly.

Price wedge dynamics for patent intensity portfolios are shown in the bottom two

panels of Figure 4. The HL portfolio appears in the left-hand panel and the long and

short sides separately (relative to the market) are on the right-hand side. According to

the benchmark model, the long-short portfolio is initially undervalued by a little less

than twenty percent, all deriving from undervaluation of patent-intensive firms. These

results help to interpret the CAPM alphas previously reported in Table 3, Panel A.

These showed no CAPM mispricing for non-innovators, consistent with the negligible

price wedge for the short side of the patent-intensity long-short portfolio. On the other

hand, Table 3, Panel A, showed large positive CAPM alphas for high-PI firms. The

bottom right-hand panel of Figure 4 reveals that these abnormal returns should be in-

terpreted as undervaluation that takes several years to resolve. The price-wedge results

thus match early discussion of undervaluation of technological innovation by investors,

perhaps because of short-sightedness or misunderstanding the value of innovation (Hall,

1993, Hall and Hall, 1993). Quantitatively, the near 20% undervaluation of the high-PI

portfolio is nearly as large as the long side of the traditional “value” portfolio, and also

larger than the undervaluation of any of the other traditional anomaly portfolios. The

results therefore support that patent-intensity portfolios are not only growth portfolios

as shown in the prior section, but also possess the defining characteristic of “value”,

undervaluation.

The price wedge dynamics in Figure 4 also show considerable persistence of technological-
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innovator undervaluation. Section 4 further investigates the persistence of innovator

mispricing using aged portfolios.

4. Life-Cycle Dynamics

We show risk and alpha dynamics of patent-intensity sorted portfolios for a decade

following the initial sort date. To form aged portfolios, at the end of June of year

t we use the PI sort from year t − K and form value-weighted portfolios, for lags

K = 0, 1, ..., 9. The sorts do not depend on time-t information, and any stocks from

the t −K sort that are no longer present at date t are simply omitted from the aged

portfolio. The K-aged portfolio returns are identical to the returns one would receive

if forming the portfolios at year t−K, rebalancing at the end of each month to current

value weights based on the stocks remaining from the original portfolio sort. In other

words, we study portfolios of firms that were classifiedK years ago by PI.22 The analysis

reveals the evolution of risk and performance of the initially sorted portfolios over time.

Table 6 shows raw returns of the aged portfolios and alpha dynamics for the CAPM,

FF3, and FF5 models for the full sample (Panel A) and subsample beginning in 1963

(Panel B). The results are striking. In both samples, the raw return differences of the

HL portfolio begin at about 7% annually, and slowly decline over the following decade.

In the full sample the HL return difference remains statistically significant at the 5%

level for the full decade, and exceeds 3% annually every year but one. Under CAPM

and FF3 risk adjustment, positive abnormal returns remain statistically significant for

two to three years after portfolio formation.

The addition of the investment and profitability factors in the FF5 portfolios (Panel

B) not only makes abnormal performance larger, but also more persistent. For the

long-short portfolio, the FF5 alpha remains significant at the 5% level for a full decade

following portfolio formation, exceeding 4% in every year but one. Non-patenters have

22Baba Yara, Boons, and Tamoni (2023) study differences between aged and newly sorted portfolios
for a range of anomalies.
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significantly negative FF5 alphas in all years. As discussed by Binsbergen and Opp

(2019), persistence in abnormal performance, or significant inaccuracy in costs of capital

over long time periods, can imply highly inefficient real investment. The FF5 model

produces inaccurate benchmarks for PI-sorted portfolio returns for a decade following

formation.23

Table 7 shows that the expected growth factor of the q5 model resolves these diffi-

culties for nearly all portfolios and horizons. Panel A shows alphas, which are nearly

all statistically indistinguishable from zero. Panels B-F show the dynamics of factor

loadings and provide statistical tests for changes. The factor loading dynamics are also

depicted in Figure 5.

Table 7 and Figure 5 reveal a compelling economic story of innovative-firm dynamics.

First, consider expected growth itself (Panel F of Table 7). The initial spread is strong

and monotonic, with the high-PI loading equal to 0.59, the non-innovator loading−0.16,

and the net HL loading equal to 0.75. We typically anticipate loadings with a strong

initial sort to mean-revert. The expected growth loadings do so, but with a twist.

The four innovator expected-growth loadings cluster in a range from 0.07 to 0.17 by

the end of the decade, all significantly different from their initially highly dispersed

values. In contrast, the non-innovator loading stays negative and statistically significant

throughout the decade, and its change over the full decade is indistinguishable from

zero. As a consequence, even after ten years the HL expected growth loading is 0.3,

significant at the 5% level. Innovator and non-innovator expected growth loadings

revert very slowly to apparently different means, and non-innovator expected growth is

persistently low.

The loadings on investment (Table 7, Panel D) also persistently distinguish inno-

vators from non-innovators. The non-innovator loading begins at 0.23 (t = 4.45), and

is the only positive estimate (conservative) in year one following formation. The non-

innovator loading slowly increases over the decade, becoming more conservative. The

23The Internet Appendix shows that the FF6 model, which adds momentum, produces similar, if
anything stronger, mispricing of the aged portfolios.
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high-intensity innovators move in the other direction. Their initial loading of −0.14 is

statistically indistinguishable from zero, but rapidly becomes more negative (aggressive)

before flattening out. By year ten, the high-PI portfolio shows an investment loading of

−0.38 (aggressive, t = −4.33). Thus, the initially strong difference in investment load-

ings in year one (HL equals −0.36, t = −2.3), becomes even more pronounced by year

ten (HL equals −0.67, t = −5.94).24 Investment loading dynamics contradict the antic-

ipated convergence of portfolio risk in the decade following portfolio formation. Rather

than converge, the initially more aggressive investment loadings of high-PI firms rela-

tive to non-innovators in year one following formation become even more pronounced

by the end of the decade.

The final piece of the economic story is profitability. Once again the initial sort

on loadings is strong and monotonic, with non-innovators loading slightly positively on

profitability (0.09, t = 2.33) and high-intensity innovators loading negatively (−0.66,

t = −6.82). Over time mean-reversion occurs, but slowly, and in the 10th year high-

intensity innovators still load negatively (−0.27, t = −2.8). Over the ten-year period,

non-innovator profitability changes insignificantly (year ten minus year one loading

difference equals −0.02, t = −1.05). Meanwhile, the most intense innovators move

strongly towards robust profitability (year ten minus year one loading diference equals

0.41, t = 4.82).

These three elements, growth, investment, and profitability, drive a compelling eco-

nomic story. High-intensity innovators develop growth options, which they take advan-

tage of through increasingly heavy investment, gradually leading to improved profitabil-

ity. All three factors earn strong premia, and all are needed to explain the complex risk

and return dynamics of innovative firms.25

24Figure 5 Panel F further shows that this divergence of investment loadings is predictable, as shown
by the strong overlap between expected growth loadings and two-year-forward investment loadings.

25The dynamics of size loadings are also consistent with the effects of innovation. Naturally, we
expect ex ante that size loadings should decrease over time as firms age and survivors become larger.
Most of the portfolios show gradually decreasing size loadings, but the most innovation-intensive
portfolio shows the most rapid decline, consistent with these firms growing fastest.
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5. Alternative Measures of Technological Innovation

We compare patent intensity (PI) with three additional measures of technological inno-

vation. First, PI3 is defined similarly to PI, but the numerator is the average number

of patents per year over the prior three years. Second, KPSS is the measure of Kogan,

Papanikolaou, Seru, and Stoffman (2017), scaled by market capitalization for compa-

rability with PI. The KPSS measure captures the dollar value of patents embedded in

short-window announcement effects around the patent-grant announcement.

Our third measure of innovative activity is R&D intensity (RDI), the ratio of re-

search and developlment expenditures to market capitalization. Conceptually, R&D

expenditures are an input to technological innovation, while patents are an output.

The success of research and development is uncertain, but prior literature (e.g., Bound,

Cummins, Griliches, Hall, and Jaffe, 1982) shows that R&D expenses predict patent-

ing. Following prior literature, we measure R&D intensity (RDI) on June 30 as the

ratio of R&D expense (prior fiscal year) to CRSP market capitalization (calendar end

of prior year), starting in 1976 (fiscal year 1975 for the R&D data). Chan, Lakonishok,

and Sougiannis (2001) first show a positive relationship between R&D expenses and

returns, and also scale R&D by market capitalization. Although R&D data is available

prior to fiscal-year 1975, in 1974 the FASB issued SFAS No. 2, which standardized and

required accounting for R&D costs, for fiscal years beginning in 1975 or later.26 Hou,

Mo, Xue, and Zhang (2021) confirm a positive relationship between RDI and abnormal

returns with standard factors in a sample extended to 2016.

Relative to prior literature, we make an important change in the treatment of missing

or zero R&D expenses. Both Chan, Lakonishok, and Sougiannis (2001) and Hou, Mo,

Xue, and Zhang (2021) include only stocks with positive R&D, sorting into quintiles and

deciles respectively. Stocks with missing or zero R&D are excluded.27 We treat stocks

26See Statement of Financial Accounting Standard No. 2: Accounting for Research and Development
Costs at https://fasb.org/referencelibrary. The impact of this change has been studied in the
accounting literature. See Elliott, Richardson, Dyckman, and Dukes (1984).

27See Chan, Lakonishok, and Sougiannis (2001) Table VI, p. 2449, and Hou, Xue, and Zhang (2020)
Appendix A.5.4, p. 2104. See also Cohen, Diether, and Malloy (2013).
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with missing R&D in Compustat as having no R&D. Following our sorting methodology

for patents, R&D portfolio zero comprises all stocks with zero or missing R&D (“non-

innovators”), and we sort the remaining firms (“innovators”) into four equal bins by

firm count.

Our approach to missing or zero R&D data is different but informative. First,

as Peters and Taylor (2017) explain, SFAS No. 2 gives reasonable confidence that

firms with missing R&D expenses in Compustat after 1974 typically did not incur such

expenses, i.e., can be treated as zero. Second, the identical treatment of our R&D

sort with our patent sort gives greater comparability of results. Third, the effects of

our treatment of R&D expenses can be checked ex post. If our portfolio zero of non-

innovators with R&D looks similar to our portfolio of non-innovators with patents,

where there is no missing data, then this gives confidence that treating absence of R&D

expenses as no R&D expenses is sensible. Finally, including firms with zero or missing

R&D expenses greatly expands the scope of our analysis. In the post-1975 period, firms

with zero or missing R&D comprised 60-70% of the total universe by firm count, and

40-50% of the total universe by market capitalization, as shown in Figure 6. Including

these firms therefore broadens our analysis.

Table 8 compares the PI measure with the three alternatives. Panel A shows cor-

relations, Panel B shows full sample results, Panel C begins in 1963 to accommodate

profitability and investment factors, and Panel D begins in 1976 when the RDI measure

becomes available.

The correlations of the three measures are all positive, with the strongest correlations

between PI and PI3 (0.95 in full sample), fairly strong correlation between PI and RDI

(0.74 beginning in 1976), and moderate correlation between PI and KPSS (0.42 in full

sample). Intuitively, PI and PI3 capture the same idea and their difference amounts

to a robustness check. PI and RDI are closely related, and reflect different stages in

the innovation process. The KPSS measure and PI reflect heterogeneity in innovation

(e.g., Klepper, 1996, Akcigit and Kerr, 2018) in different ways. KPSS captures the

dollar value of immediate announcement effects, and will be larger for firms whose
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innovations can be more easily and immediately valued by the market.

We see these similarities and differences reflected in Panels B-D of Table 8. The re-

turns, alphas, and loadings of the PI and PI3 portfolios are similar throughout the table,

and the comparison in Panel C (“Differences”, PI-PI3) shows no statistical distinction

between the two long-short portfolios.

The differences between PI and KPSS are more meaningful. Throughout the table,

the long-short return spreads and alphas are larger for PI than for KPSS. For exam-

ple, in Panel C the HL return spread for PI is 7.1% annually and highly statistically

significant, whereas the HL return spread for KPSS is less than 1% and statistically in-

distinguishable from zero. The FF5 alphas of the long-short portfolios are closer (6.9%

vs. 3.2%), but still differ by 3.7% annually, significant at the 5% level. These differences

in returns and alphas are intutitive, since the original purpose of the KPSS measure is

to capture short-run valuation changes. The PI measure in contrast is largest for firms

without valuable assets in place, with innovations that are riskier and harder to value

according to theories of innovation heterogeneity. Remarkably, q5 risk adjustment in

Panel D reconciles the differences between PI and KPSS. The comparison in the second

to last row shows that the alphas are statistically indistinguishable under the q5 model,

with the realignment attributable to large and statistically significant differences in four

of the five factor loadings. Relative to KPSS, the PI portfolio loads more negatively

on profitability, and more positively on market beta, size, and expected growth. These

differences are consistent with the idea that PI captures innovation by small, risky,

unprofitable firms without valuable assets in place, but with high expected growth.

Due to the shorter availability of R&D data, we can only compare PI and RDI

in Panel D. The return spreads, alphas, and loadings are broadly comparable. The

final row in the panel shows that the main statistical difference is that PI has a larger

expected growth loading (0.93 for PI, t = 6.8 vs. 0.52 for RDI, t = 4.2, difference is

0.42, t = 3.7). This difference is economically sensible, since patenting occurs at a later

stage in the innovation process than R&D, presumably when expected growth is more

immediate. The other similarities between PI and RDI results suggest that missing
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and zero R&D firms, often discarded in prior studies, can reasonably be allocated to

portfolio 0 as in our study. An important benefit of patent intensity relative to RDI is

the length of the sample, which begins in 1926 rather than 1976, an extra fifty years of

data. Patent intensity is a useful new measure of technological innovation.

6. Conclusion

Over the past century, approximately a quarter of publicly listed US firms could be

classified as technological innovators by their patenting activity. Since the 1930’s, in-

novators accounted for more than half of the total market capitalization at any point

in time. Despite being long-proposed as a key driver of economic growth, and risky,

technological innovation plays no explicit role in leading factor models of expected re-

turns. Our paper proposes a simple patent-based measure that shows the importance

of technological innovation for average returns and risk.

Technological innovators earn higher returns than non-innovators, and do not incur

the same punishment for high capital investment and low profitability as non-innovators.

Further, a portfolio of firms with high patenting intensity earns significant abnormal

returns for a full decade after portfolio formation, according to standard factor models.

We unite our findings with the recent literature on the role of expected growth in

stock returns (Hou, Mo, Xue, and Zhang, 2021). Over time, firms with high patenting

intensity invest more in physical capital and improve their profitability. The expected

growth factor of HMXZ is crucial to explain the returns of innovating firms.

Our study highlights strongly predictable patterns in the risk dynamics of innova-

tive firms. The results suggest more formally linking theory to the evolution of firm

risk, providing stronger tests of pricing models. Since our measure does not rely on

accounting data, empirical studies can use long samples, even beyond the nearly full

century of data that we study. This is particularly important in the context of technol-

ogy and growth, which shape the behavior of firms and the development of economies

for decades into the future.
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Appendix: Variable Definitions

We use the following variable definitions:

CRSP age: calculated from the stock’s first appearance in CRSP.

Investment: total assets (Compustat item AT) for the fiscal year ending in t− 1,

divided by total assets for fiscal year ending in t− 2 minus one.

Profitability: total revenue (REVT) minus cost of goods sold (COGS, zero if miss-

ing), minus selling general and administrative expenses (XSGA, zero if missing),

minus interest expense (XINT, zero if missing), divided by book equity, all for

fiscal year ending in t−1. We require at least one of COGS, XSGA, and XINT to

be non-missing. Book equity is stockholders’ book equity plus deferred taxes and

investment credits (TXDITC), if available, minus book equity of preferred stock.

Stockholders’ equity is Compustat item SEQ, if available. If not, we use book

value of common equity (CEQ) plus value of preferred stocks (PSTK). Otherwise,

we use the book value of total assets (AT) minus book value of total liabilities

(LT). For the value of preferred stocks, we use redemption (PSTKRV), liquidating

(PSTKL), or par value (PSTK) depending on availability and in this order.

BM: book-to-market ratio with book equity from fiscal year ending in year t− 1

divided by the firm market capitalization from the end of December t− 1. Book

equity is as in Profitability, but we further complement it with historical book-

equity data from Davis, Fama, and French (2000) to allow time series back to

1926.

PPE: property, plant and equipment.

Intangibles: defined in Compustat as “item consists almost exclusively of the

excess of cost over equity acquired in assets of purchased subsidiaries which are

still unamortized or not eliminated by a direct charge to a capital account”, i.e.,

intangibles recognized through acquisitions.
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ROA: net income (IB) divided by total assets (AT).

Sales growth: Salet/Salet−1 − 1.

Market beta: CAPM beta estimated at the end of June year t by regressing a

stock’s monthly excess returns on market excess returns and a constant, using

returns over the last 60 months, requiring a minimum of 36 months.

CAPXt/PPENTt−1: based on the respective variables from Compustat.
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Figure 1: Patenting and Public Firms. Panel A shows the log number of patents per calendar

year of patent assignees (all, CRSP, and US-based CRSP). CRSP assignee is any CRSP firm assigned a patent

in current year, and US-based CRSP assignees are US-incorporated firms with common stock (shrcd 10 or 11).

Panel B shows the patent shares of CRSP assignees and US-based CRSP assignees. Panel C shows the count

of all US-based CRSP firms (shrcd 10 or 11) and the subset of technological innovators, which are firms with

at least one patent in a given year, using June year-ends. Panel D shows the technological innovators’ share of

US-based CRSP firms by firm count. Panel E plots the log market capitalization of all US-based CRSP firms and

the technological innovator subsample. Panel F shows the technological innovators’ market capitalization share

relative to all US-based CRSP firms. All stocks or firms refer to firms traded on NYSE, NASDAQ or AMEX.
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Panel B. Non-patenting Firms

Other -- Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment, Finance
Manufacturing -- Machinery, Trucks, Planes, Chemicals, Off Furn, Paper, Com Printing
Oil, Gas, and Coal Extraction and Products
Consumer NonDurables -- Food, Tobacco, Textiles, Apparel, Leather, Toys
Utilities
Wholesale, Retail, and Some Services (Laundries, Repair Shops)
Consumer Durables -- Cars, TV's, Furniture, Household Appliances
Healthcare, Medical Equipment, and Drugs
Business Equipment -- Computers, Software, and Electronic Equipment
Telephone and Television Transmission

Figure 2: Sector Composition of Patenting and Non-patenting Firms. Panel
A shows sectors’ market capitalization shares of total market capitalization of patenting
firms. For each sector, we calculate the market capitalization of patenting firms in the
sector and divide by the total market capitalization of patenting firms in all sectors.
Panel B shows the equivalent for non-patenting firms. Patenting firm is a firm with at
least one patent in a year. Sectors are defined by Fama-French 10 industries.
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Figure 3: Dynamics of Patent-Intensity Portfolio Characteristics. This figure shows

dynamics of variables indicated in the panel headings for aged PI-sorted portfolios. Characteristic and market-

beta definitions are given in the Appendix. Characteristics are measured by the calendar year of their fiscal

year-end, allocated to portfolios formed the following June, and market betas are measured at the end of June.

Firms are initially sorted every year at the end of June into three portfolios. The first consists of non-patenting

firms (PI=0). Remaining firms are split equally into two portfolios, low- and high-PI. The stocks are held in the

portfolios over horizon of 10 years. Portfolio formation begins in 1963 and ends ten years before the end of our

sample. For all portfolios, we first calculate the annual value-weighted average at the specified horizon and then

average across years. The dotted line shows value-weighted statistics for all firms.
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Figure 4: Price Wedge Dynamics. The figure shows price wedge dynamics for
portfolios sorted on size, book-to-market, investment, and profitability in the top row
and portfolios sorted on PI in the bottom row. Price wedges are calculated as the
difference between observed and fair market value from the 15-year dividend discount
model and CAPM SDF of Binsbergen, Boons, Opp, and Tamoni (2021). The top-
left panel plots the price wedge for a long-short portfolio, where the long side is the
portfolio with the highest (lowest) value of b/m or profitability (size or investment) and
the short side is the portfolio with the lowest (highest) value. Market is the estimated
price wedge of the market portfolio. The top-right panel plots the price wedges of the
individual legs of the aforementioned long-short portfolios. The bottom-left panel plots
the price wedge of a portfolio that goes long high PI firms (portfolio 4) and short low
PI firms (portfolio 0). The bottom-right panel shows the wedges of the two portfolios
separately.
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Figure 5: Aged Patent-Intensity Portfolios, q5 Loading Dynamics. The figure

shows dynamics of q5 loadings for aged PI-sorted portfolios, as indicated in headings of panels A-E.

Panel F shows HL and high-PI expected growth (EG) loadings overlaid with (negative) investment

(IA) loadings two years ahead. The investment loadings are plotted negatively to facilitate comparison.

Portfolio construction follows the description in Section 3 and the aged portfolios are value-weighted,

rebalanced monthly, following the description in Section 4. The sample begins in 1967 to accommodate

availability of the q5 factors.
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Figure 6: Non-innovators According to R&D and Patenting. Panel A shows
the fraction of CRSP firms with no patenting activity (blue line) and fraction of firms
with zero or missing R&D activity (red line). Panel B shows the fraction of the total
CRSP market capitalization that belongs to these firms. The sample is identical to
Figure 1.



Table 1: Patent Intensity (PI) and Firm Characteristics. This table shows char-

acteristics of firms sorted on patent intensity PI, defined as patents received in the prior year divided

by market capitalization. We sort every year at the end of June into three groups. Non-patenting

firms have PI=0. The remaining firms are split into two equal groups by firm count, low- and high-PI.

Panel A begins in 1926. Share of firms is the percentage of all companies in each category. Share of

cap is the share of total market capitalization in each category. Share of patents is the share of all

patents granted to US-based CRSP assignees at the time of sorting or as indicated, granted to firms

in each category. Panel B begins in 1963. Characteristics and asset types are based on information at

the time of sorting and are defined in the Appendix. Mean and median indicate whether the value is

from cross-sectional mean or median, before averaging across years. For all numbers, we first calculate

the annual percentages (or mean and median as indicated) and then average across years from 1926

to 2021, or as indicated.

Non-patenting Low PI High PI

Panel A. Summary statistics beginning 1926

Portfolio shares (columns sum to 1)
Share of firms 0.682 0.159 0.159
Share of cap 0.349 0.538 0.113
Share of patents 0.000 0.375 0.625
Share of patents (next year) 0.012 0.391 0.597
Share of patents (next 3 years) 0.014 0.405 0.581
Share of patents (next 5 years) 0.017 0.418 0.565

Characteristics
CRSP age mean 13.313 20.289 15.420
CRSP age median 11.710 17.693 13.000
BM mean 1.592 0.807 1.150
BM median 1.010 0.666 0.924

Panel B. Summary statistics beginning 1963

Characteristics
Investment mean 0.137 0.164 0.090
Investment median 0.075 0.091 0.043
Profitability mean 0.164 0.257 0.095
Profitability median 0.210 0.264 0.165

Asset composition (share of total assets)
PPE 0.301 0.294 0.234
Intangibles 0.070 0.100 0.070
Current assets 0.513 0.519 0.625
Cash 0.128 0.157 0.203



Table 2: Transition Probabilities of PI- vs. B/M-sorted Portfolios. Panel A shows the transition probabilities over one,

three, and five years between portfolios of stocks sorted by PI as described in the notes of Table 1. Rows specify the initial portfolio and columns

the ending portfolio, with “out” designating a stock that leaves the sample. Entries indicate the conditional probability of moving from the

initial portfolio (rows) to the destination portfolio (columns), and sum to one across columns. Panel B shows equivalent transition probabilities

for book-to-market (B/M) sorts, where ”Missing” denotes firms with negative or missing book-to-market ratios. To improve comparison, the

B/M sorts are based on the same percentiles as the PI sorts: Each year, we calculate the percentages of firms in each of the three PI-sorted

portfolios and use these percentages to categorize stocks by B/M. The unconditional probabilities (shares) of non-patenting, low-PI, and high-PI

portfolios are 68.2%, 15.9% and 15.9%, respectively (see table 1). These probabilities apply also to the B/M-sorted portfolios for stocks with

non-missing B/M (89.7% of stocks have non-missing B/M). Accordingly, the unconditional probabilities of the three B/M-sorted portfolios are:

68.2%*89.7%=61.2% (high B/M or value), 15.9%*89.7%=14.3% (medium B/M or neutral), and 15.9%*89.7%=14.3% (low B/M or growth).

Transition probabilities are calculated annually from 1926 to 2020. The presented transition probabilities are time-series averages.

Panel A. PI-sorted portfolios Panel B. B/M-sorted portfolios

Non-
pat.

Low
PI

High
PI

Out Value Neutral Growth Missing Out

Transition probabilities over 1 year

Non-patenting 86.8 4.6 2.6 6.0 Value 85.8 6.5 1.6 1.6 4.5
Low PI 17.8 67.0 12.7 2.6 Neutral 34.8 43.8 16.1 1.7 3.6
High PI 12.7 12.0 71.2 4.1 Growth 9.7 19.8 63.0 3.8 3.6

Missing 11.8 2.8 7.1 63.2 15.1

Transition probabilities over 3 years

Non-patenting 76.0 5.2 2.8 16.0 Value 73.7 7.7 3.1 2.2 13.4
Low PI 17.4 58.7 16.0 7.9 Neutral 43.5 28.2 15.3 2.3 10.7
High PI 13.3 15.1 60.0 11.7 Growth 21.0 20.3 43.8 4.0 10.9

Missing 17.6 4.9 7.2 42.2 28.1

Transition probabilities over 5 years

Non-patenting 67.7 5.5 2.9 24.0 Value 65.8 7.8 3.5 2.3 20.7
Low PI 17.1 53.7 16.8 12.4 Neutral 45.1 22.2 13.5 2.3 16.9
High PI 12.9 16.5 52.4 18.2 Growth 25.7 18.5 35.2 3.6 17.1

Missing 20.3 5.7 6.4 30.3 37.3



Table 3: Patent-Intensity Sorts and Performance, Fama-French Factors. The table

shows the average excess returns of PI-sorted portfolios in panel A and regressions of excess portfolio returns

(in excess of the risk-free rate) on a constant and market excess returns (Panel B), the Fama-French three

factors (Panel C), and the Fama-French five factors (Panel D). Portfolio 0 consists of non-patenting firms and

the remaining portfolios are sorted by PI annually into equal groups by firm count. HL is a zero-cost portfolio,

long portfolio 4 and short portfolio 0. Stocks are sorted at the end of June. The time period of each panel

is indicated in the headings. In this and remanining tables (unless stated differently), the portfolios are value-

weighted, rebalanced monthly. The underlying portfolio returns are at monthly frequency, and the estimates of

the average excess returns and constants (alphas) are annualized by multiplying by twelve. t-statistics based

on Newey-West heteroscedasticity and autocorrelation consistent standard errors with five lags are reported in

parentheses. */**/*** indicate significance level at 10, 5, and 1%, respectively.

1926-2021 1963-2021

0 1 2 HL 0 1 2 3 4 HL
Panel A. Excess returns
Ex. ret. 7.76*** 8.46*** 11.91*** 4.15*** 6.75*** 6.26*** 8.76*** 9.7*** 13.81*** 7.06***

(3.82) (4.41) (4.77) (3.85) (2.98) (3.15) (3.96) (3.82) (4.12) (3.42)

Panel B. CAPM
Constant -0.5 0.52* 1.91** 2.41** -0.32 -0.24 1.68** 1.68 4.93** 5.25***

(-1.04) (1.66) (2.35) (2.42) (-0.48) (-0.45) (2.46) (1.59) (2.57) (2.63)
Mkt-RF 1.0*** 0.96*** 1.21*** 0.21*** 1.01*** 0.93*** 1.01*** 1.15*** 1.27*** 0.26***

(69.36) (91.24) (42.98) (7.64) (57.79) (71.22) (60.69) (43.28) (27.14) (5.34)
R2 0.95 0.97 0.89 0.14 0.93 0.94 0.9 0.82 0.67 0.07

Panel C. Fama-French 1993
Constant -0.94** 0.81*** 1.54* 2.47** -1.33*** 0.44 1.93*** 1.31 3.79** 5.12***

(-2.28) (3.05) (1.92) (2.45) (-2.76) (1.04) (2.77) (1.23) (2.2) (2.62)
Mkt-RF 0.96*** 0.99*** 1.15*** 0.19*** 1.02*** 0.95*** 1.01*** 1.08*** 1.13*** 0.11*

(84.19) (123.49) (42.05) (5.83) (68.83) (99.1) (52.89) (31.28) (21.04) (1.75)
SMB 0.08** -0.12*** 0.26*** 0.18* 0.09** -0.19*** -0.01 0.31*** 0.72*** 0.63***

(2.47) (-9.17) (3.58) (1.81) (2.14) (-15.23) (-0.23) (3.63) (5.78) (3.85)
HML 0.14*** -0.07*** 0.05 -0.09 0.22*** -0.11*** -0.06* 0.0 0.08 -0.14*

(5.65) (-4.69) (1.01) (-1.39) (7.31) (-5.54) (-1.84) (0.09) (1.24) (-1.68)
R2 0.96 0.98 0.9 0.18 0.95 0.96 0.9 0.85 0.76 0.25

Panel D. Fama-French 2015
Constant -1.67*** 0.24 2.19*** 2.19** 5.22*** 6.89***

(-3.48) (0.55) (3.12) (2.09) (3.07) (3.55)
Mkt-RF 1.02*** 0.96*** 1.01*** 1.09*** 1.13*** 0.11**

(77.74) (95.13) (64.79) (34.01) (24.3) (2.13)
SMB 0.13*** -0.18*** -0.05* 0.23*** 0.59*** 0.46***

(5.39) (-13.73) (-1.65) (3.9) (7.61) (4.83)
HML 0.22*** -0.08*** -0.08** -0.09 -0.1 -0.32***

(6.6) (-3.68) (-2.03) (-1.28) (-1.11) (-2.84)
CMA -0.04 0.0 0.08 0.14 0.22 0.26

(-1.14) (0.13) (1.37) (1.53) (1.52) (1.6)
RMW 0.12*** 0.04* -0.12*** -0.3*** -0.47*** -0.58***

(2.98) (1.86) (-3.18) (-3.79) (-3.16) (-3.4)
R2 0.96 0.96 0.9 0.86 0.78 0.32



Table 4: Characteristics Sorts for Innovative vs. Non-innovative Firms. The table shows

average excess long-short returns sorted on investment (Panel A) and profitability (Panel B) for subsamples of

innovative and non-innovative firms, as well as FF5 alphas and loadings. Stocks are labeled as innovators and

non-innovators at the end of June in each year t and then sorted into five portfolios within the two groups.

Innovative firms are firms that have at least one patent in the last year and three patents over the last three

years. The remaining firms are treated as non-innovative. The table shows the returns of the bottom portfolio 0,

top portfolio 4, and the long-short (HL) 4-0. Investment and profitability are defined in the notes to the Table

1. Following Hou, Xue, and Zhang (2020), we discard stocks with negative book equity. The sample period is

1963-2021. t-statistics from Newey-West heteroscedasticity and autocorrelation consistent standard errors with

five lags are reported in parentheses. */**/*** indicate significance level at 10, 5, and 1%.

Portfolio Ex. ret. Alpha Mkt-RF SMB HML CMA RMW

Panel A. Investment
Non-innovative
0 9.26*** -1.66* 1.09*** 0.42*** 0.08 0.5*** 0.07

(3.83) (-1.88) (53.71) (11.88) (1.53) (6.84) (1.09)
4 5.29* -2.73*** 1.14*** 0.31*** 0.03 -0.41*** 0.11*

(1.95) (-3.28) (59.9) (8.34) (0.59) (-7.79) (1.82)
HL -3.97*** -1.07 0.05** -0.11*** -0.05 -0.91*** 0.04

(-3.02) (-0.93) (2.22) (-2.71) (-1.27) (-10.11) (0.59)

Innovative
0 9.05*** -0.26 1.08*** 0.05 -0.2*** 0.78*** -0.08

(3.99) (-0.24) (51.19) (1.37) (-3.63) (10.06) (-1.28)
4 7.4*** 3.41*** 1.04*** -0.1*** -0.2*** -0.63*** -0.12***

(2.84) (3.63) (46.69) (-3.67) (-4.58) (-8.35) (-3.14)
HL -1.65 3.66*** -0.04 -0.15*** -0.0 -1.4*** -0.04

(-0.98) (2.99) (-1.46) (-3.42) (-0.05) (-17.85) (-0.54)

Difference (Innovative - Non-innovative)

HL 2.33 4.73** -0.09** -0.05 0.05 -0.49*** -0.08
(1.37) (2.55) (-2.31) (-0.7) (0.56) (-3.64) (-0.72)

Panel B. Profitability
Non-innovative
0 3.78 -0.32 1.14*** 0.4*** -0.15** -0.35*** -1.14***

(1.12) (-0.2) (34.21) (5.77) (-2.3) (-3.08) (-11.18)
4 8.11*** -1.6*** 1.08*** 0.24*** 0.12*** -0.11** 0.46***

(3.46) (-2.58) (59.91) (7.47) (3.16) (-2.21) (10.76)
HL 4.33* -1.28 -0.06 -0.16** 0.27*** 0.24* 1.6***

(1.91) (-0.75) (-1.43) (-2.36) (4.04) (1.84) (17.53)

Innovative
0 10.89*** 6.66*** 1.07*** 0.48*** -0.52*** 0.32* -1.32***

(3.05) (3.59) (24.93) (5.83) (-5.41) (1.82) (-8.05)
4 8.39*** 1.63*** 0.95*** -0.13*** -0.16*** 0.02 0.3***

(4.27) (3.02) (82.74) (-6.2) (-5.83) (0.52) (8.46)
HL -2.5 -5.03*** -0.12*** -0.61*** 0.36*** -0.29* 1.62***

(-0.91) (-2.81) (-2.77) (-7.92) (3.9) (-1.77) (11.49)

Difference (Innovative - Non-innovative)

HL -6.83*** -3.75 -0.06 -0.45*** 0.09 -0.53** 0.02
(-3.07) (-1.43) (-1.12) (-4.21) (0.75) (-2.38) (0.09)



Table 5: Patent Intensity and q-Factors. The table shows the results of regressing the

PI-portfolio returns on a constant and the q4-factors (Hou, Xue, and Zhang, 2015), market (MKT),

size (ME), investment (IA), and profitability (ROE) in Panel A, or q5-factors (Hou, Mo, Xue, and

Zhang, 2021), adding expected growth (EG) in panel B. Portfolio 0 consists of non-patenting firms and

the remaining portfolios are sorted by PI annually into equal groups by firm count. HL is a zero-cost

portfolio, long portfolio 4 and short portfolio 0. Stocks are sorted at the end of June. The time period

is 1967-2021. t-statistics from Newey-West heteroscedasticity and autocorrelation consistent standard

errors with five lags are reported in parentheses. */**/*** indicate significance level at 10, 5, and 1%.

0 1 2 3 4 HL

Panel A. q4-factors

Constant -1.94*** 0.06 2.89*** 3.46*** 6.79*** 8.73***
(-3.09) (0.13) (3.72) (2.75) (3.62) (3.83)

MKT 1.02*** 0.96*** 1.0*** 1.06*** 1.09*** 0.07
(50.66) (89.75) (53.05) (27.76) (20.15) (1.0)

ME 0.14*** -0.18*** -0.08** 0.22*** 0.58*** 0.44**
(2.66) (-10.88) (-1.98) (2.58) (4.54) (2.53)

IA 0.2*** -0.07** -0.06 -0.05 -0.05 -0.26*
(4.26) (-2.23) (-1.35) (-0.72) (-0.44) (-1.7)

ROE 0.04 0.06*** -0.14*** -0.29*** -0.47*** -0.51***
(1.2) (2.8) (-3.26) (-4.56) (-5.2) (-4.68)

R2 0.95 0.96 0.9 0.86 0.78 0.28

Panel B. q5-factors

Constant -0.65 0.41 0.59 1.43 1.97 2.62
(-1.16) (0.83) (0.82) (1.18) (1.25) (1.43)

MKT 1.0*** 0.96*** 1.03*** 1.09*** 1.16*** 0.16***
(55.9) (89.61) (60.53) (28.98) (24.3) (2.71)

ME 0.12** -0.19*** -0.05 0.24*** 0.64*** 0.52***
(2.3) (-11.34) (-1.25) (2.95) (5.18) (3.06)

IA 0.23*** -0.06** -0.1** -0.09 -0.14 -0.36**
(4.45) (-2.06) (-2.48) (-1.15) (-1.11) (-2.3)

ROE 0.09** 0.08*** -0.23*** -0.37*** -0.66*** -0.75***
(2.33) (3.41) (-5.22) (-4.92) (-6.82) (-6.12)

EG -0.16*** -0.04 0.28*** 0.25*** 0.59*** 0.75***
(-3.96) (-1.39) (6.1) (3.03) (5.4) (5.66)

R2 0.95 0.96 0.91 0.86 0.8 0.34



Table 6: Aged Patent-Intensity Portfolios, Returns and Alphas. The table shows
average excess and abnormal returns (alphas) of aged PI-sorted portfolios. At the end of June
of year t, stocks are sorted into K-aged portfolios based on the patent-intensity sort from the
end of June of year t−K. All portfolios are rebalanced monthly based on market capitalization
at the end of the prior month. The sample period begins in 1926 in Panel A and in 1963
in Panel B and ends in 2021 for both panels. Portfolio 0 consists of non-patenting firms and
the remaining portfolios are sorted by PI. HL is a zero-cost portfolio with a long position in
portfolio 4 and a short position in portfolio 0. The left-most column indicates the portfolio and, if
applicable, the benchmark model for alphas. t-statistics from Newey-West heteroscedasticity and
autocorrelation consistent standard errors with five lags are reported in parentheses. */**/***
indicate significance level at 10, 5, and 1%.

Portfolio/ Horizon (K + 1, years)
Model 1 2 3 4 5 6 7 8 9 10
Panel A. 1926- Excess returns

0 7.76*** 7.78*** 7.75*** 7.27*** 7.72*** 7.83*** 9.14*** 8.05*** 8.07*** 7.98***
(3.82) (3.79) (3.75) (3.52) (3.75) (3.81) (4.49) (4.41) (4.44) (4.39)

4 15.02*** 14.84*** 12.52*** 10.41*** 10.54*** 11.78*** 14.1*** 11.38*** 11.65*** 11.2***
(4.85) (4.89) (4.28) (3.49) (3.68) (4.0) (4.82) (4.37) (4.44) (4.39)

HL 7.26*** 7.06*** 4.77*** 3.14** 2.82** 3.96*** 4.96*** 3.32** 3.59** 3.22**
(4.42) (4.36) (3.09) (2.03) (1.96) (2.72) (3.3) (2.3) (2.39) (2.16)

Alphas

CAPM/HL 4.04*** 3.98*** 2.13 0.48 0.24 0.94 1.6 0.39 0.65 0.64
(2.9) (2.68) (1.46) (0.34) (0.18) (0.73) (1.16) (0.27) (0.45) (0.42)

FF3/HL 3.51** 3.74*** 2.28* 0.58 0.31 0.94 2.04 1.24 1.79 2.07
(2.57) (2.69) (1.68) (0.44) (0.24) (0.75) (1.56) (0.94) (1.33) (1.49)

Panel B. 1963- Excess returns

0 6.75*** 6.83*** 6.91*** 6.63*** 6.65*** 6.45*** 6.45*** 6.65*** 6.44*** 6.31***
(2.98) (3.04) (3.08) (2.98) (3.01) (2.93) (2.93) (3.05) (2.99) (2.94)

4 13.81*** 14.11*** 11.72*** 9.46*** 9.37*** 9.82*** 10.86*** 10.02*** 9.65*** 9.97***
(4.12) (4.28) (3.75) (2.99) (3.04) (3.15) (3.38) (3.17) (3.05) (3.16)

HL 7.06*** 7.28*** 4.81** 2.82 2.72 3.36* 4.41** 3.38* 3.2 3.66*
(3.42) (3.5) (2.41) (1.46) (1.49) (1.89) (2.32) (1.75) (1.61) (1.8)

Alphas

CAPM/HL 5.25*** 5.37** 2.95 0.76 0.75 1.26 2.17 1.18 0.92 1.51
(2.63) (2.55) (1.41) (0.38) (0.4) (0.72) (1.17) (0.61) (0.46) (0.74)

FF3/HL 5.12*** 5.93*** 4.12** 1.79 1.65 2.3 3.39** 2.64 2.38 3.04*
(2.62) (3.2) (2.34) (1.01) (1.0) (1.38) (1.97) (1.54) (1.38) (1.73)

FF5/0 -1.67*** -1.68*** -1.66*** -1.91*** -1.79*** -1.77*** -1.73*** -1.47*** -1.58*** -1.64***
(-3.48) (-3.62) (-3.43) (-3.99) (-3.73) (-3.75) (-3.65) (-3.21) (-3.43) (-3.5)

1 0.24 -0.05 0.11 -0.04 -0.03 0.27 0.32 0.19 0.03 0.35
(0.55) (-0.11) (0.26) (-0.09) (-0.06) (0.55) (0.71) (0.45) (0.07) (0.79)

2 2.19*** 2.68*** 1.64*** 1.64** 1.14* 0.56 0.76 0.42 1.06* 0.46
(3.12) (3.92) (2.65) (2.5) (1.84) (0.92) (1.34) (0.72) (1.76) (0.79)

3 2.19** 1.61* 1.19 1.54* 1.84** 1.83** 0.98 1.73** 0.54 0.84
(2.09) (1.68) (1.42) (1.78) (2.06) (2.03) (1.05) (2.0) (0.55) (0.94)

4 5.22*** 6.46*** 5.01*** 2.5* 1.98 2.19* 3.39** 3.0** 2.7* 3.49**
(3.07) (4.05) (3.24) (1.82) (1.51) (1.66) (2.37) (2.08) (1.9) (2.42)

HL 6.89*** 8.14*** 6.67*** 4.42*** 3.77** 3.96*** 5.12*** 4.47*** 4.28*** 5.12***
(3.55) (4.57) (3.8) (2.8) (2.44) (2.6) (3.11) (2.72) (2.62) (3.06)



Table 7: Aged Patent-Intensity Portfolios, q5 Alpha and Loading Dynamics. The
table shows the abnormal returns (alphas in Panel A) relative to q5-factor model Hou, Mo, Xue,
and Zhang (2021) and the loadings on the model’s factors (Panels B-F) of PI-sorted portfolios
(indicated in rows) for holding period of one-year at different investment horizons (indicated
in columns). Details of the portfolio construction and investment horizons are described in the
Table 6 notes. The sample period begins in 1967, to accommodate the q-factors, and ends in
2021. t-statistics from Newey-West heteroscedasticity and autocorrelation consistent standard
errors with five lags are reported in parentheses. */**/*** indicate significance level at 10, 5,
and 1%.

Horizon (K + 1, years)

1 2 3 4 5 6 7 8 9 10 10-1

Panel A. Alpha
0 -0.65 -0.79 -0.69 -1.07* -0.87 -0.95* -0.91 -0.62 -1.08* -1.04* -0.39

(-1.16) (-1.38) (-1.2) (-1.91) (-1.56) (-1.7) (-1.61) (-1.12) (-1.94) (-1.79) (-1.08)
1 0.41 0.52 0.29 0.02 -0.31 -0.01 -0.14 -0.55 -0.77 -0.4 -0.81

(0.83) (0.98) (0.56) (0.03) (-0.59) (-0.01) (-0.23) (-0.98) (-1.28) (-0.71) (-1.32)
2 0.59 0.68 0.26 0.62 0.23 0.02 0.13 -0.05 1.25 0.25 -0.34

(0.82) (0.87) (0.33) (0.75) (0.32) (0.03) (0.18) (-0.07) (1.57) (0.33) (-0.37)
3 1.43 0.6 0.44 1.22 1.59 1.14 0.63 0.89 -0.41 0.14 -1.29

(1.18) (0.51) (0.39) (1.04) (1.42) (1.01) (0.58) (0.9) (-0.39) (0.14) (-1.25)
4 1.97 3.69 2.9 0.6 -0.39 -0.26 0.66 1.3 0.98 2.17 0.2

(1.25) (1.59) (1.33) (0.37) (-0.25) (-0.17) (0.4) (0.76) (0.57) (1.24) (0.11)
HL 2.62 4.48* 3.59 1.67 0.48 0.69 1.58 1.93 2.06 3.21 0.59

(1.43) (1.68) (1.45) (0.89) (0.26) (0.4) (0.81) (0.99) (1.03) (1.57) (0.31)

Panel B. Market beta
0 1.0*** 1.01*** 1.01*** 1.01*** 1.01*** 1.0*** 1.0*** 0.99*** 0.99*** 0.99*** -0.01

(55.9) (56.19) (57.09) (58.21) (62.2) (59.64) (53.56) (60.21) (58.95) (57.06) (-1.62)
1 0.96*** 0.95*** 0.95*** 0.95*** 0.94*** 0.95*** 0.95*** 0.95*** 0.95*** 0.94*** -0.02

(89.61) (82.59) (72.39) (77.13) (85.72) (77.45) (78.98) (92.59) (93.32) (90.25) (-1.55)
2 1.03*** 1.05*** 1.03*** 1.05*** 1.05*** 1.04*** 1.03*** 1.03*** 1.0*** 1.03*** -0.01

(60.53) (59.47) (53.08) (52.68) (66.57) (61.72) (66.27) (63.58) (62.74) (65.38) (-0.25)
3 1.09*** 1.09*** 1.12*** 1.08*** 1.1*** 1.1*** 1.09*** 1.1*** 1.12*** 1.08*** -0.01

(28.98) (36.95) (47.55) (47.67) (44.61) (46.29) (48.04) (50.71) (52.96) (44.75) (-0.34)
4 1.16*** 1.17*** 1.12*** 1.17*** 1.18*** 1.21*** 1.21*** 1.18*** 1.19*** 1.15*** -0.01

(24.3) (32.79) (24.25) (29.33) (30.53) (27.28) (28.53) (27.78) (26.68) (22.77) (-0.24)
HL 0.16*** 0.16*** 0.11* 0.16*** 0.18*** 0.21*** 0.21*** 0.19*** 0.2*** 0.16*** 0.0

(2.71) (3.69) (1.91) (3.23) (3.63) (3.98) (4.09) (3.66) (3.52) (2.68) (0.06)

Panel C. Size
0 0.12** 0.11** 0.1* 0.09* 0.08* 0.07 0.06 0.05 0.04 0.01 -0.11***

(2.3) (2.31) (1.88) (1.88) (1.84) (1.56) (1.17) (1.18) (1.09) (0.19) (-8.09)
1 -0.19*** -0.2*** -0.19*** -0.19*** -0.18*** -0.2*** -0.17*** -0.18*** -0.18*** -0.17*** 0.02

(-11.34) (-14.32) (-12.47) (-13.46) (-11.56) (-8.03) (-8.52) (-9.82) (-8.54) (-8.15) (0.64)
2 -0.05 -0.08* -0.1*** -0.14*** -0.13*** -0.14*** -0.14*** -0.17*** -0.18*** -0.18*** -0.14***

(-1.25) (-1.94) (-3.44) (-6.24) (-5.47) (-5.63) (-6.26) (-6.66) (-7.5) (-6.99) (-3.39)
3 0.24*** 0.22*** 0.15*** 0.1** 0.06 0.09** 0.02 0.08* 0.03 0.04 -0.2***

(2.95) (3.61) (3.17) (2.44) (1.35) (2.0) (0.46) (1.68) (0.75) (0.95) (-3.42)
4 0.64*** 0.53*** 0.54*** 0.43*** 0.39*** 0.33*** 0.4*** 0.33*** 0.34*** 0.32*** -0.33***

(5.18) (6.34) (4.54) (4.94) (5.32) (3.9) (4.23) (3.14) (3.4) (3.01) (-4.73)
HL 0.52*** 0.42*** 0.44*** 0.34*** 0.31*** 0.27** 0.34** 0.28* 0.3** 0.31** -0.21***

(3.06) (3.36) (2.72) (2.66) (2.91) (2.23) (2.51) (1.94) (2.21) (2.14) (-2.93)



Table 7, Aged Portfolios, q5 Dynamics – continued.

Horizon (K + 1, years)

1 2 3 4 5 6 7 8 9 10 10-1

Panel D. Investment loading (IA)
0 0.23*** 0.25*** 0.26*** 0.28*** 0.28*** 0.27*** 0.27*** 0.28*** 0.29*** 0.28*** 0.06**

(4.45) (4.7) (5.12) (5.13) (5.73) (6.29) (5.89) (5.94) (6.92) (6.6) (2.35)
1 -0.06** -0.03 0.02 0.05** 0.07*** 0.07* 0.07* 0.05 0.05 0.06** 0.12***

(-2.06) (-1.28) (0.79) (2.12) (2.68) (1.91) (1.87) (1.46) (1.4) (2.06) (3.07)
2 -0.1** -0.07 -0.14** -0.13** -0.08* -0.02 0.01 0.07* 0.03 0.03 0.13***

(-2.48) (-1.62) (-2.42) (-2.3) (-1.93) (-0.52) (0.15) (1.83) (0.86) (0.89) (2.74)
3 -0.09 -0.13 -0.11 -0.18** -0.15*** -0.17*** -0.13** -0.17*** -0.06 -0.07 0.02

(-1.15) (-1.6) (-1.53) (-2.42) (-2.67) (-2.9) (-2.0) (-2.78) (-0.95) (-1.35) (0.28)
4 -0.14 -0.19 -0.44*** -0.33*** -0.26*** -0.21** -0.29*** -0.35*** -0.37*** -0.38*** -0.25**

(-1.11) (-1.3) (-3.03) (-3.83) (-3.24) (-2.33) (-3.25) (-3.95) (-4.14) (-4.33) (-2.09)
HL -0.36** -0.44** -0.7*** -0.61*** -0.54*** -0.47*** -0.56*** -0.63*** -0.66*** -0.67*** -0.31**

(-2.3) (-2.31) (-3.8) (-5.07) (-4.96) (-4.41) (-4.75) (-5.28) (-5.78) (-5.94) (-2.47)

Panel E. Profitability loading (ROE)
0 0.09** 0.09** 0.1** 0.11*** 0.09** 0.08** 0.06 0.06 0.07* 0.07* -0.02

(2.33) (2.38) (2.33) (2.62) (2.18) (2.03) (1.46) (1.34) (1.72) (1.81) (-1.05)
1 0.08*** 0.05** 0.04 0.03 0.04* 0.04 0.04 0.05* 0.03 0.01 -0.07**

(3.41) (2.21) (1.6) (1.27) (1.92) (1.61) (1.48) (1.87) (1.17) (0.3) (-2.12)
2 -0.23*** -0.18*** -0.14*** -0.16*** -0.13*** -0.11** -0.1*** -0.07** -0.04 0.0 0.23***

(-5.22) (-4.78) (-3.31) (-2.97) (-2.69) (-2.55) (-2.59) (-2.1) (-1.26) (0.0) (4.91)
3 -0.37*** -0.29*** -0.21*** -0.18*** -0.2*** -0.18*** -0.12** -0.14*** -0.08* -0.09* 0.28***

(-4.92) (-5.17) (-4.56) (-3.24) (-3.71) (-3.5) (-2.39) (-2.71) (-1.69) (-1.79) (4.09)
4 -0.66*** -0.44*** -0.3*** -0.35*** -0.34*** -0.39*** -0.24*** -0.25*** -0.29*** -0.27*** 0.39***

(-6.82) (-4.65) (-2.77) (-4.68) (-4.1) (-4.0) (-3.03) (-3.05) (-2.89) (-2.8) (4.92)
HL -0.75*** -0.54*** -0.4*** -0.45*** -0.43*** -0.47*** -0.3*** -0.3*** -0.36*** -0.34*** 0.41***

(-6.12) (-4.48) (-2.96) (-5.01) (-4.19) (-3.96) (-2.87) (-2.81) (-2.84) (-2.87) (4.82)

Panel F. Expected-growth loading (EG)
0 -0.16*** -0.14*** -0.15*** -0.15*** -0.15*** -0.14*** -0.14*** -0.13*** -0.12*** -0.13*** 0.03

(-3.96) (-3.34) (-3.59) (-3.41) (-3.48) (-3.56) (-3.21) (-3.34) (-2.98) (-3.01) (1.43)
1 -0.04 -0.05 -0.0 0.02 0.05 0.05 0.09** 0.1*** 0.14*** 0.15*** 0.19***

(-1.39) (-1.49) (-0.09) (0.68) (1.38) (1.16) (2.07) (2.63) (3.3) (3.92) (4.62)
2 0.28*** 0.27*** 0.21*** 0.2*** 0.19*** 0.14*** 0.14*** 0.13*** 0.05 0.07 -0.22***

(6.1) (5.62) (4.52) (4.21) (3.75) (2.83) (3.3) (3.3) (1.12) (1.53) (-4.0)
3 0.25*** 0.22** 0.16** 0.1 0.12* 0.16** 0.1* 0.15** 0.12** 0.09 -0.16**

(3.03) (2.53) (2.09) (1.27) (1.73) (2.53) (1.73) (2.5) (2.02) (1.51) (-2.2)
4 0.59*** 0.38*** 0.27** 0.24** 0.3*** 0.34*** 0.28*** 0.21* 0.23** 0.17 -0.42***

(5.4) (2.88) (2.3) (2.19) (2.83) (3.45) (2.72) (1.77) (1.97) (1.52) (-3.09)
HL 0.75*** 0.52*** 0.42*** 0.39*** 0.45*** 0.48*** 0.42*** 0.34** 0.35** 0.3** -0.45***

(5.66) (3.26) (2.86) (2.86) (3.36) (3.88) (3.22) (2.41) (2.45) (2.15) (-3.14)



Table 8: Alternative Innovation Measures. We compare patent intensity with alternative mea-

sures. PI3 is average patent count over the last 36 months divided by market capitalization. KPSS is the sum of

nominal values of patents granted to the firm over the last twelve months divided by market capitalization. RDI

is R&D expense (prior fiscal year) divided by market capitalization. Portfolio 0 consists of non-innovative stocks

(zero or missing value of the relevant measure). Remaining stocks are sorted into four portfolios based on the

relevant measure. The long-short portfolio is long portfolio 4 and short portfolio 0. Panel A shows correlations

between long-short portfolio returns. Panels B-D show average excess returns, alphas, and factor loadings of

portfolio 0, portfolio 4, and long-short portfolios. Estimates in Panel B are from the full time period 1926-2021.

Panel C starts in 1963 to accommodate investment and profitability factors, and Panel D in 1976 due to avail-

ability of reliable R&D data. Panels C and D show differences between portfolios formed on PI and alternatives

as indicated. t-statistics from Newey-West heteroscedasticity and autocorrelation consistent standard errors with

five lags are reported in parentheses. */**/*** indicate significance level at 10, 5, and 1%.

A. Correlations 1926- 1963- 1976-

PI PI3 KPSS PI PI3 KPSS PI PI3 KPSS

PI3 0.95 0.94 0.94
KPSS 0.42 0.44 0.34 0.36 0.38 0.4
RDI - - - - - - 0.74 0.74 0.34

B. 1926- Excess returns Alphas FF3 Loadings

0 4 HL FF3 FF5 Q5 Mkt-RF SMB - - HML

PI 7.76*** 15.02*** 7.26*** 3.51** - - 0.29*** 0.47*** - - 0.04
(3.82) (4.85) (4.42) (2.57) - - (6.88) (3.67) - - (0.49)

PI3 7.8*** 14.96*** 7.16*** 3.47*** - - 0.29*** 0.47*** - - 0.03
(3.8) (4.9) (4.5) (2.67) - - (6.7) (4.5) - - (0.4)

KPSS 7.76*** 10.28*** 2.52** 2.3*** - - 0.14*** -0.23*** - - -0.08
(3.82) (4.64) (2.5) (2.67) - - (2.93) (-4.41) - - (-1.04)

C. 1963- Excess returns Alphas FF5 Loadings

0 4 HL FF3 FF5 Q5 Mkt-RF SMB CMA RMW HML

PI 6.75*** 13.81*** 7.06*** 5.12*** 6.89*** - 0.11** 0.46*** 0.26 -0.58*** -0.32***
(2.98) (4.12) (3.42) (2.62) (3.55) - (2.13) (4.83) (1.6) (-3.4) (-2.84)

PI3 6.76*** 14.22*** 7.46*** 5.49*** 7.47*** - 0.11** 0.44*** 0.19 -0.59*** -0.28***
(2.97) (4.34) (3.78) (3.01) (4.39) - (2.16) (4.89) (1.1) (-4.64) (-2.86)

KPSS 6.75*** 7.69*** 0.94 2.87*** 3.18*** - -0.02 -0.31*** 0.09 -0.15*** -0.32***
(2.98) (3.72) (0.83) (3.21) (3.59) - (-0.96) (-7.97) (1.23) (-2.61) (-6.2)

Differences
PI-PI3 -0.02 -0.41 -0.39 -0.37 -0.58 - 0.0 0.05 0.02 0.02 0.06

(-0.17) (-0.55) (-0.52) (-0.49) (-0.63) - (0.2) (1.06) (0.31) (0.62) (0.93)
PI-KPSS - 6.13*** 6.13*** 2.26 3.71** - 0.15*** 0.81*** -0.06 -0.57*** 0.42***

- (2.89) (2.89) (1.4) (2.3) - (3.39) (7.71) (-0.51) (-6.91) (4.34)
PI3-KPSS 0.02 6.53*** 6.52*** 2.62* 4.29*** - 0.15*** 0.76*** -0.08 -0.59*** 0.37***

(0.17) (3.3) (3.27) (1.82) (3.22) - (3.37) (9.83) (-0.82) (-7.32) (4.32)

D. 1976- Excess returns Alphas q5 Loadings

0 4 HL FF3 FF5 Q5 MKT ME IA ROE EG

PI 8.39*** 14.31*** 5.92** 3.48 5.8*** 1.21 0.18*** 0.58*** -0.42** -0.91*** 0.93***
(3.43) (3.71) (2.38) (1.55) (2.59) (0.58) (2.61) (2.94) (-2.56) (-6.84) (6.8)

PI3 8.53*** 14.83*** 6.3*** 3.88* 6.46*** 2.78 0.17** 0.52*** -0.45*** -0.94*** 0.86***
(3.47) (3.95) (2.68) (1.84) (3.36) (1.32) (2.55) (3.33) (-2.88) (-7.13) (6.75)

KPSS 8.39*** 9.01*** 0.62 2.28** 2.64*** 0.44 0.02 -0.27*** -0.36*** -0.28*** 0.42***
(3.43) (3.91) (0.48) (2.26) (2.69) (0.39) (0.58) (-3.24) (-4.51) (-4.1) (5.74)

RDI 8.18*** 13.41*** 5.23** 2.54 5.84*** 4.28** 0.15** 0.49*** -0.41*** -0.86*** 0.52***
(3.48) (3.61) (2.17) (1.22) (2.93) (2.15) (2.54) (2.79) (-3.03) (-6.93) (4.21)

Difference
PI-KPSS - 5.3** 5.3** 1.2 3.16 0.77 0.16*** 0.86*** -0.06 -0.63*** 0.51***

- (2.1) (2.1) (0.63) (1.61) (0.44) (3.11) (6.9) (-0.48) (-6.83) (4.94)
PI-RDI 0.2 0.9 0.7 0.94 -0.03 -3.07* 0.03 0.1 -0.02 -0.05 0.42***

(0.68) (0.58) (0.44) (0.58) (-0.02) (-1.81) (0.61) (1.5) (-0.15) (-0.57) (3.68)
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