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Telemedicine has long been of interest to the U.S. general public. Yet, despite the advent of high-speed inter-

net and mobile device technology, telemedicine did not reach its full potential until the COVID-19 pandemic

spurred its unparalleled adoption. This sudden shift in the setting of healthcare delivery raises questions

regarding possible changes in clinical decision-making. Using a unique set of patient-provider encounter data

from the U.S. in 2020 and 2021, we examine the effect of telemedicine on antibiotic prescription errors for

urinary tract infections. We consider two types of prescription errors: prescribing when not recommended

by guidelines (type I errors) and not prescribing when recommended (type II errors). After accounting for

potential endogeneity issues using provider fixed effects and an instrumental variable approach, we find a

significantly lower likelihood of overall prescription errors (type I and II errors combined) with telemedicine

relative to in-person encounters. We also find heterogeneous effects by a provider’s patient volume and

the patient-provider relationship. Further analyses show that the reduction in prescription errors is mainly

attributable to type I errors, and that patient health outcomes are not compromised when care is delivered

via telemedicine. Finally, we discuss managerial implications for the pharmaceutical and insurance industries,

as well as policy implications for governments.
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1. Introduction

Telemedicine has long been of interest to the general public in the U.S. As early as 1994, the Depart-

ment of Health and Human Services disbursed more than $7 million to fund research and pilot

programs for telemedicine, with a focus on improving access to healthcare (Field et al. 1996). The

advent and widespread uptake of high-speed internet and mobile device technology were expected

to lead to rapid utilization of telemedicine, as the technological barrier was less of an issue. It was

believed that mobile devices equipped with high-speed internet connectivity and a high-resolution

camera could easily support telemedicine apps and facilitate seamless interactions between patients

and providers. However, due to regulatory, financial, and cultural barriers, telemedicine did not

reach its full potential (Rogove et al. 2012).

This landscape changed dramatically with the onset of the COVID-19 pandemic. The spread

of the highly infectious respiratory virus forced many states to order lockdowns and suspend
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non-essential in-person healthcare visits. These policy changes led to as much as a 60% reduc-

tion in visits to ambulatory care practices early in the pandemic in the U.S.1 The unprecedented

global pandemic, combined with the existing technological foundation, spurred an unparalleled

adoption of telemedicine. Patients were motivated to use telemedicine to fill prescriptions and con-

sult with providers for non-life-threatening health issues in the safe environment of their homes.

Providers saw telemedicine as an additional revenue source at a time when a large portion of rev-

enue from in-person visits had disappeared almost overnight. The federal government temporarily

loosened restrictions on provider licensing, health information privacy requirements, and prescrip-

tion of controlled substances. Many state governments also mandated insurance plans to reimburse

telemedicine services at the same rate as in-person visits, eliminating the payment disparity that

had previously stymied telemedicine adoption (see Weigel et al. 2020 for more telemedicine policy

changes around the pandemic). As a result of these changes, the proportion of telemedicine visits

among primary care visits increased from 1.1% in Q2 of total 2018-2019 visits to 35.3% in Q2 of

2020 (Alexander et al. 2020).

This sudden shift in the setting of healthcare delivery raises questions regarding possible changes

in clinical decision-making across various parts of the healthcare systems. For instance, one of the

ongoing concerns related to telemedicine is whether providers’ prescribing decisions have remained

consistent. To explore this issue, our paper focuses on the specific topic of prescription errors,

which have been a major concern in the U.S. healthcare system. Each year, prescription errors

lead to 7,000 – 9,000 deaths, affect over 7 million patients, and cost the economy more than $40

billion (Tariq et al. 2021). In the case of antibiotic prescriptions, the CDC estimates that 50%

of all outpatient antibiotic use is inappropriate.2 Using data of more than 19 million outpatient

antibiotic prescriptions in the U.S., Chua et al. (2019) find that 53.7% – 89.2% of the prescriptions

are inappropriate or potentially inappropriate. Given the unprecedented modality shift in care

delivery, changes might occur in provider-patient modes of communication means and behaviors,

which could in turn affect the prevalence of antibiotic prescription errors. Therefore, our paper

aims to examine a vital healthcare management question: What is the impact of telemedicine

on providers’ prescribing decisions? More specifically, does telemedicine affect the likelihood of

antibiotic prescription errors relative to in-person settings?

We focus on antibiotic prescriptions for UTI patients for several considerations. According to

the literature, antibiotic prescription error is a prevalent issue for patients with urinary tract

infections (UTIs), and 46.7% of antibiotics prescribed were found to be inappropriate for UTI

1 https://www.commonwealthfund.org/publications/2020/apr/impact-covid-19-outpatient-visits

2 https://www.cdc.gov/antibiotic-use/data/outpatient-prescribing/index.html#f3
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treatment (Clark et al. 2021). Through interviews with providers, we further learned that the

standard treatment for a UTI is preemptive antibiotic prescription without the need for an in-

person examination. Anecdotal evidence also suggests that UTI is a most common urological

condition that can be treated via telehealth3 and that UTI patients can get equally good care with

telehealth.4 It is worth noting that a provider may require a patient to visit a lab and provide

a urine specimen to confirm the infection, but the initial evaluation and treatment – providing a

prescription for antibiotics – can all be done through telehealth.3 More importantly, because UTI

is not directly related to COVID-19, our sample is less subject to concerns about patient selection

and unobserved bias related to the pandemic.

We assembled UTI patient records between January 2020 and September 2021 from a national

proprietary electronic health record (EHR) data source. The data contain diagnosis, procedure,

and medication information, allowing us to compare prescriptions associated with telemedicine

visits and in-person visits. We follow the outpatient antibiotic prescription guidelines (Chua et al.

2019) to identify prescription errors, and we consider two types of prescription errors in this study:

prescribing when not recommended by guidelines (type I errors) and not prescribing when recom-

mended (type II errors).5

The ordinary least squares (OLS) regression results show a statistically significant reduc-

tion (20.7%) in the likelihood of overall prescription errors (type I and II errors combined) in

telemedicine visits compared to in-person visits. It is worth noting that unobserved factors may

exist and affect the endogenous selection of telemedicine, which then biases our parameter estimate.

For example, suppose uncomplicated and less error-prone UTI cases are more likely to be seen

via telemedicine. In that case, we will find a spurious correlation between telemedicine visits and

fewer prescription errors. To address this endogeneity concern, we employ an instrumental variable

(IV)—the proportion of telemedicine visits within the same zip code as a focal patient—after con-

trolling for time, provider, and patient-specific factors.6 The IV estimate shows a larger reduction

in the likelihood of prescription errors (45.3%), suggesting that the OLS estimate provides a more

conservative measure. We also show that our results hold through a battery of robustness checks.

Our study also investigates heterogeneous effects of telemedicine by a provider’s patient volume

and the patient-provider relationship. We find a larger reduction in the likelihood of overall pre-

scription errors among providers with higher past UTI-patient volume and new patients who have

3 https://www.healthgrades.com/right-care/kidneys-and-the-urinary-system/7-bladder-and-kidney-conditions-
treated-in-telehealth-visits

4 https://www.goodrx.com/conditions/urinary-tract-infection/uti-treatment-without-doctor-visit

5 There may be other types of errors, such as wrong dosages (e.g., prescribing a 14-day regimen instead of a 7-day
regimen), wrong administration route, etc. Unfortunately, our data are not suitable to analyze such errors.

6 Other studies such as Lu et al. (2018) and Sun et al. (2020) use similar IVs in the healthcare research.
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no prior encounters with providers. We further show that the error reduction is primarily driven

by the reduction in the likelihood of type I errors (i.e., prescribing when not recommended by

guidelines). By contrast, we do not find any statistical difference in the likelihood of type II errors

(i.e., not prescribing when recommended). Lastly, we show that patient outcomes (i.e., revisits due

to UTI complications) are not compromised after telemedicine visits.

These findings have several implications. First, telemedicine is likely to become an integral part

of healthcare delivery going forward, and our study offers important insights into the relationship

between telemedicine and prescription errors. In this regard, the U.S. Congress is working to extend

waivers for telemedicine to “give experts and regulators an opportunity to gather more data on tele-

health and fashion a far-reaching proposal with more evidence,”7 and our causal inference analysis

contributes to the much-needed data evidence on telemedicine. Our findings on prescription errors

imply that telemedicine may help reduce drug waste and perhaps drug abuse, and potentially

associated healthcare costs. Second, our analyses on heterogeneous effects along providers’ and

patients’ characteristics can inform government and commercial insurer decisions on the allocation

of resources to target certain patient and provider segments for telemedicine expansion when pre-

scription errors are an important consideration. Third, our results offer a better understanding of

the public risk of this new healthcare technology innovation. In our study, patient health outcomes

in telemedicine encounters, at least in the case of UTIs, do not statistically differ from those of

in-person encounters. In other words, telemedicine does not degrade the quality of care in our

sample, which supports telemedicine deployment and expansion to payers and patients.

The rest of the paper is organized as follows. We first provide an overview of related literature.

We then develop the hypotheses, discuss the clinical setting and describe the data, empirical

strategy, and results. After that, we explore heterogeneous effects, and we examine error types and

patient health outcomes to gain further insights. Finally, we conclude with a general discussion

and implications for the healthcare industry and policy makers.

2. Literature Review

This section presents relevant literature on health IT, telemedicine, and prescription decisions.

2.1. Health IT and Physician Practice

In 2009, the Health Information Technology for Economic and Clinical Health Act (HITECH) was

signed into law, which provided more than 30 billion in stimulus funds to promote the adoption

of health IT (Agarwal et al. 2010). Researchers have identified two related streams of research

questions: health IT adoption and its impact. Our paper fits into the second stream, and more

specifically, we connect health IT adoption and physician practice.

7 https://www.washingtonpost.com/politics/2021/06/14/health-202-lawmakers-are-deciding-future-telehealth/
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Early studies on health IT are primarily exploratory and qualitative. Through a national sur-

vey of 2,758 physicians, DesRoches et al. (2008) investigate how the adoption of electronic health

records affects physician practices. Despite the relatively low adoption rate, physicians who adopted

EHR systems reported positive effects on quality of care, including quality clinical decisions, com-

munication with other providers and patients, prescription refills, timely access to medical records,

and avoidance of medication errors. Besides the positive effect, literature also reports adverse

effects, where the improper use of health IT might be harmful to physician practice and care qual-

ity. For instance, drawing on a literature review, Ash et al. (2004) find that the implementation

of health IT seems to foster error, and the errors can happen either in the process of entering and

retrieving information or in the communication and coordination process.

More recent research literature mainly relies on empirical studies and expands the scope in the

settings and the aspects of physician practice. Goh et al. (2011) examine the interplay between

health IT and patterns of clinical work. The findings suggest that the key to successful health IT

implementation is to manage the co-evolution process between routines and HIT and to actively

orchestrate a virtuous cycle through agentic action. Bhargava and Mishra (2014) study the impact

of an EHR system on physician productivity. Using a panel data set comprising 87 physicians

over 39 months in the US, the study finds that productivity drops sharply immediately after

technology implementation and recovers partly over the next few months. Wang et al. (2020)

investigate physicians’ online-offline behavior dynamics using data from China. The study shows

that physicians’ online activities can lead to a higher service quantity in offline channels, whereas

offline activities may reduce physicians’ online services because of resource constraints. Ganju et al.

(2020) examine the role clinical decision support systems (CDSS) play in attenuating systematic

bias. The results suggest that CDSS adoption significantly shrinks disparities in amputation rates

across white and black patients, which is driven by changes in treatment care protocols that match

patients to appropriate specialists, rather than altering within physician decision making. Li et al.

(2021) investigate the value of HIT interoperability in the interhospital transfer process of heart

attack patients. The authors find health IT interoperability has little effect in reducing duplicate

electrocardiogram testing. However, better HIT interoperability yields a 15.6% more reduction in

the throughput time and leads to a three-percentage-point decrease in the 30-day readmission rate

of transferred patients. Huang et al. (2021) examine the effect of online-offline service integration on

e-healthcare providers. The study shows that the service integration function increases providers’

online demand and reputation but decreases offline demand.
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2.2. Telemedicine
2.2.1. Telemedicine and Its Application

Telemedicine generally refers to the delivery of care at a distance, where a provider in one location

uses a telecommunications infrastructure to deliver care to a patient at a distant site.8 Because of

the slow telemedicine adoption before the pandemic, the literature has often focused on identifying

barriers to adoption. For example, Lin et al. (2018) point out that rural location, operational

factors, patient demographic characteristics, and reimbursement policies are the major barriers

to telemedicine among federally funded health centers in the U.S. Kruse et al. (2018) conduct a

systematic review of studies worldwide and identify barriers such as technically challenged staff,

resistance to change, cost and reimbursement, and patient demographics. Hwang et al. (2021)

find that social and information frictions, such as cultural and linguistic differences and limited

media coverage, suppress the supposedly free flow of teleconsultations across different regions in

China. Many of these barriers came down in a matter of weeks during the pandemic (such as the

lift of restrictions on reimbursement), and one may wonder if any barriers remain. McCullough

et al. (2021) further use data from Michigan during the pandemic and find that the accelerated

adoption may have depended on broadband access and technology skills, exacerbating disparities

in healthcare.

Another stream of research investigates the impact of telemedicine adoption on healthcare uti-

lization and workload. Ayabakan et al. (2020) study the impact of telehealth use on utilization

and find a substitution effect of telehealth for chronic patients and a gateway effect for non-chronic

patients. Rajan et al. (2019) find that with the introduction of telemedicine, the specialists become

more productive and the overall social welfare increases, although some patients, unexpectedly,

will be worse off. Saghafian et al. (2018) develop a partially observable Markov process to study

the effectiveness of telemedical physician triage in workload management, and then conduct ana-

lytic and numerical analyses to derive insights into the management of the telemedical physician

triage system. Sun et al. (2020) focus on the emergency room setting and find that telemedicine

can improve provider productivity and reduce emergency room congestion. Bavafa et al. (2018)

and Bavafa and Terwiesch (2019) find the e-visit channel (i.e., secure messaging in their context)

increases patient visits and provider workload. Delana et al. (2019) find telemedicine reduces hos-

pital visit rates but increases overall network visit rates.

As Royce et al. (2020) pointed out, one of the foremost concerns during the rapid adoption of

telemedicine is maintaining safety and quality of care. However, limited research has connected

telemedicine and physician practice, partly due to the low telemedicine adoption rate before the

8 https://www.aafp.org/news/media-center/kits/telemedicine-and-telehealth.html
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pandemic. Therefore, our study aims to investigate the effect of telemedicine on physician prescrip-

tion errors and patient health outcomes, which we believe is critical before its broader application

and extension.

2.2.2. Telemedicine and Antibiotic Prescription Errors

A small number of papers in the medical literature have examined the relationship between

telemedicine and antibiotic prescription errors, but the evidence thus far is equivocal, with prior

research reporting positive, negative, and nonexistent effects. Some studies find that telemedicine

visits, relative to office visits, are associated with more inappropriate antibiotic prescriptions and

more broad-spectrum antibiotic use among adults and children (Mehrotra et al. 2013, Ray et al.

2019, Uscher-Pines et al. 2016). By contrast, Shi et al. (2018) and Yao et al. (2020) do not find

statistical differences in antibiotic prescriptions between the two settings, whereas Hersh et al.

(2019) find fewer antibiotic prescriptions among telemedicine visits for children under 18 years of

age.

Although the varying conclusions may be attributable to differences in the data sample and time

period, the most critical issue in these studies is the lack of consideration for potential endogeneity

issues related to telemedicine adoption and usage. Besides, these studies are typically based on

individual hospitals that are early adopters that pioneer in health IT initiatives. Thus their systems

tend to be customized and optimized for the clinical setting. However, in practice, patients’ unob-

served health conditions may sway providers’ decisions to choose telemedicine over office visits,

and different policies may hinder some providers from adopting it. Hence, a more general sam-

ple of physicians and causal inference is critical to properly justify the impact of telemedicine on

physician clinical decisions.

Given the lack of clear evidence and the ethical concerns of conducting large-scale randomized

experiments in healthcare settings, causal inference from observational data is critical for academia

and healthcare practitioners. As such, our paper aims to address the endogeneity issues associated

with telemedicine visits and draw a causal link between telemedicine use and antibiotic prescription

errors. Besides accounting for provider heterogeneity, patient characteristics, and time-fixed effects,

we apply the IV estimation. Similar IV approaches have been employed to address endogeneity

concerns related to technology adoption in the healthcare market. Dranove et al. (2014) show

that an organization’s adoption of healthcare technology depends on the local market’s adoption,

because local users share the adoption costs. This finding led Lu et al. (2018) to construct an IV

based on the local hospitals’ technology adoption rate. Sun et al. (2020) also use a similar IV to

address endogeneity issues related to telemedicine use in emergency rooms. Unlike these studies

in which the technology use is examined at the institution level, we observe telemedicine use at
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the encounter level. Therefore, we construct an IV based on telemedicine use among neighboring

individuals in the vicinity. Details on IV construction and IV validity are discussed in section 5.2.

Further differentiating our work from the existing literature, we disentangle type I and type II

errors that can inform different healthcare policy implications. We also examine the heterogeneous

effects of telemedicine to gain insights into the moderating role of patient volume and patient-

provider relationships that the previous literature did not offer. Moreover, we investigate patient

health outcomes to assess the effect of provider prescribing decisiveness on care quality.

3. Hypothesis Development

The main objective of this study is to examine whether and in what direction telemedicine affects

provider prescription errors in the case of antibiotics. Towards this goal, we develop three hypothe-

ses in this section to conceptualize the mechanisms through which telemedicine may affect provider

prescribing decisions.

Health information technology has generally been shown to improve healthcare delivery in various

respects, such as quality, efficiency, and provider satisfaction (Buntin et al. 2011). Telemedicine is no

different. Compared with conventional face-to-face encounters, virtual care delivery can potentially

enhance the provider prescription decision process and reduce the likelihood of prescription errors

through three main channels.

First, the telemedicine channel can facilitate providers’ access to medication information, which

will help reduce prescription errors. Evidence suggests that providers are able to collect additional

medical information about patients that would have been difficult to obtain during an office visit.

Based on a series of interviews with providers, Gomez et al. (2021) report that medication recon-

ciliations are easier to conduct via telemedicine because “patients can show you their medications,

read the labels,” whereas patients often do not recall their medication names and regimens in office

settings. Powell et al. (2017) also note that another advantage of telemedicine is the ability to incor-

porate information from caregivers and family members who would not have been present in an

office visit. These individuals may provide additional information about the medication history of

the patient as well. When more drug information is provided by patients via telemedicine, this may

sway providers to check prescribing guidelines more carefully to avoid potential drug interactions,

thereby leading to lower prescription errors.

Second, both the literature and anecdotes suggest that telemedicine helps streamline provider

workflows. For instance, William Morris, Cleveland Clinic’s associate chief information officer,

says that “when providers can answer questions and review tests remotely, it is more efficient

for the provider, the practice, and the patient.”9 Compared with office visits, providers do not

9 https://www.medicaleconomics.com/view/how-telemedicine-expansion-will-affect-physician-practices
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need to move from one patient examination room to another, so they can better concentrate on

taking care of patients (Sun et al. 2020). Moreover, the U.S. Department of Health and Human

Services suggests that Electronic Health Records (EHR) should be easy to incorporate into the

telehealth workflow,10 enabling providers to address patient needs with patient records at hand.

Hence, providers can comprehensively review patients’ health conditions seamlessly, with minimal

distractions from other administrative tasks, which can help reduce errors in judgment and hence

prescription errors.

Third, telemedicine allows patients to receive care in a more private and comfortable environ-

ment, thus positively contributing to their willingness to communicate with providers and help

improve information coordination. For instance, Powell et al. (2017) find that many patients feel

more comfortable with video visits than office visits and prefer telemedicine because they can receive

care in relaxed surroundings with supportive people. Further, during the pandemic, a “face-to-face”

telemedicine visit may better facilitate communication than is possible in a “mask-to-mask” office

visit, which can also enhance patient-provider communication and lead to improved prescription

decisions.

While telemedicine seems to have great potential for improving providers’ prescriptions decisions,

in practice, these visits may have unintended consequences, either due to technical difficulties

or frictions associated with coordination issues (such as access to the appointment and lack of

coordination in the virtual waiting room). When these occur, telemedicine visits might be inferior to

in-person encounters. As suggested by Serrano and Karahanna (2016), technology capabilities are

critical in e-consultations. The extent to which e-consultation technology can simulate direct patient

contact experiences and transmit relevant information to the provider will influence e-consultation

diagnostics. When delivering care via telemedicine, technology limitations may hinder providers’

ability to acquire sensory information, which is only available when performing physical evaluations

(Miller 2003). Accordingly, providers may not detect certain patient symptoms that they are trained

to look for in their medical training and residency, which may lead to worse prescription decisions.

Moreover, the effective use of telemedicine requires IT training and workflow restructuring for both

patients and providers. However, because the COVID-19 pandemic was unforeseen, it is likely that

both providers and patients lack systematic training before using telemedicine at scale. This lack

of training on each side may prevent effective patient-provider coordination and service outcomes.

Conditioning on the above argument, whether telemedicine can improve providers’ prescribing

decisions is ultimately an empirical question. We, therefore, propose the following hypothesis for

an empirical test.

10 https://telehealth.hhs.gov/providers/planning-your-telehealth-workflow/
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Hypothesis 1: Telemedicine leads to better prescribing decisions (measured by a decreased like-

lihood of antibiotic prescription errors).

The effect of telemedicine may differ by a provider’s patient volume (i.e., patient treated per

period). Kc et al. (2020) note that period-specific volume is related to the scale of medical prac-

tice, and this can affect care processes and patient outcomes. Existing studies have shown that a

larger scale of practice (i.e., higher volume of patients) is often associated with a higher quality of

care, such as reduced length of stay and lower mortality rates (Kc and Terwiesch 2011, Clark and

Huckman 2012, Kuntz et al. 2019). Therefore, it is reasonable to assume that the scale at which

a provider sees patients may influence the effect of telemedicine. For example, compared to less

experienced providers, providers who are used to seeing a high volume of UTI patients may face

fewer difficulties in diagnosing and treating the infection. This difference could be more salient in

a virtual setting where technological limitations prevent doctors from performing a physical exam-

ination and retrieving other tactile information. In other words, the care processes that change via

telemedicine can potentially improve prescribing decisions more for providers with a higher patient

volume, as these providers can make better use of the improved information, and be less affected

by limitations due to technology-related issues. Accordingly, we posit the following hypothesis:

Hypothesis 2: The effect of telemedicine is larger, in terms of a larger reduction in antibiotic

prescription errors, when the care is delivered by providers with a higher patient volume.

The effect of telemedicine on prescription errors may also rely on the patient-provider relation-

ship. More specifically, the effect may be smaller for established patients than for new patients

for three reasons. First, existing studies find familiarity is associated with fewer errors (Asare and

McDaniel 1996). In the case of in-person encounters, providers who are more familiar with estab-

lished patients, can communicate efficiently with them on their medications and health conditions,

and thus are less prone to prescription errors in in-person settings. As a result, the marginal benefit

of telemedicine to established patients will be smaller than that to new patients. Second, exist-

ing patients’ health information is generally available in EHR, so providers are better aware of

their medications and health conditions. By contrast, providers have little information about new

patients, the additional medication information provided by established patients via telemedicine

is thus less informative than that provided by new patients. Therefore, when providers adminis-

ter prescriptions, the marginal benefit from telemedicine is likely smaller for established patients.

Finally, according to Gomez et al. (2021), in a virtual setting, it may be easier for providers to deny

a patient’s requests for antibiotics when deemed unwarranted. In their study, one provider stated

that she feels comfortable rejecting patients’ unwarranted superfluous requests for certain medica-

tions because “they have a video in front of them instead of the person’s right there yelling at me.”

Given the relative ease of rejecting a prescription request, telemedicine will significantly reduce



Kim, Sun, and Wang: Telemedicine and Prescription Errors
11

the likelihood of prescription error for new patients, who are more likely to test the provider’s

willingness to prescribe antibiotics. Therefore, we posit the following hypothesis:

Hypothesis 3: The effect of telemedicine is larger, in terms of a larger reduction in antibiotic

prescription errors, when there is no established patient-provider relationship.

4. Clinical Setting and Data

In this section, we provide details on the clinical setting and summarize our data.

4.1. Clinical Setting: UTIs and Prescription Errors

We use UTIs as our research context for several reasons. First, UTI is one of the common reasons

to seek care in the U.S., resulting in more than eight million outpatient visits and one million

emergency department visits annually, with associated costs estimated to be over $2 billion per year

(Rastogi et al. 2020). Second, after conducting several interviews with providers, we find that UTI

is a condition that can be easily diagnosed and treated regardless of the care setting. For example,

the initial treatment of UTIs would be prescribing antibiotics in both virtual and in-person settings.

Therefore, channel selection would be less of a concern than for other conditions that require

a physical examination, such as ear infections. This assumption is confirmed by the Infectious

Diseases Society of America (IDSA) guidelines that recommend presumptive antibiotics to treat

suspected UTI cases (Gupta et al. 2011). Third, because our data come from the pandemic period,

we rule out conditions related to COVID-19 symptoms. For instance, even though acute respiratory

infection is often treated via telemedicine, patients with such symptoms may be asymmetrically

directed to either telemedicine or the emergency department, depending on the patient’s condition,

the state of the pandemic, and the availability of hospital beds. Comparatively, UTIs are less likely

to suffer from the pandemic-related selection. Last, because we study the quality of care in terms

of prescription errors, we need clear guidelines that we can compare against observed prescriptions.

Fortunately, clinical guidelines of antibiotic prescriptions are readily available. A recent publication

by Chua et al. (2019) provides a comprehensive classification scheme to determine whether each

of more than 91,000 International Classification of Diseases, 10th Revision, Clinical Modification

(ICD-10-CM) diagnosis codes “always,”“sometimes,”or “never”justifies an antibiotic prescription.

Based on patients’ diagnosis codes and the medication administered by providers, we follow Chua

et al. (2019) to determine whether an antibiotic prescription is appropriate.

Antibiotic prescriptions have long been scrutinized by healthcare officials because of the pos-

sibility of antibiotic resistance. CDC calls it “one of the biggest public health challenges of our

time”with more than 2.8 million people getting an antibiotic-resistant infection, and over 35,000

people dying annually.11 Antibiotic prescription errors can increase antibiotic resistance among the

11 https://www.cdc.gov/drugresistance/index.html
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population, and CDC has been encouraging providers to follow clinical and treatment guidelines by

launching antibiotic stewardship programs for various care settings. Although prescribing antibi-

otics when not recommended can lead to long-term antibiotic resistance, not prescribing them when

recommended is also concerning because patients are at the risk of undertreatment, which can lead

to revisits or potentially serious complications that could have been mitigated with appropriate

prescriptions.12 Unfortunately, the short span of our data does not allow us to investigate long-

term antibiotic resistance. Instead, we examine patient health outcomes related to the possibility

of undertreatment and related complications shortly after prescriptions.

4.2. Data Description and Preparation

We obtain proprietary encounter-level EHR data in the U.S. Our data have several unique fea-

tures. First, they include modifiers appended to the Current Procedural Terminology (CPT) or the

Healthcare Common Procedure Coding System (HCPCS) codes for each encounter, which allows

us to distinguish telemedicine from in-person visits. More specifically, our data record encoun-

ters conducted via telemedicine with one or more of the following modifiers: (1) 95–synchronous

telemedicine (two-way live audiovisual), (2) GT–interactive audio and video telecommunications,

(3) GQ–asynchronous telecommunication system, and (4) G0–telemedicine services for diagnosis,

evaluation, or treatment of symptoms of an acute stroke.13

Second, our data contain detailed information about diagnoses and medications for each visit.

The diagnosis codes help us identify UTI-related encounters (ICD-10-CM: O23, O86.2, O03.38,

O03.88, O04.88, O07.38, O08.83, N30.0, N30.8, N30.9, N34.1, N34.2, or N39.0). Each included

UTI encounter has the prescribing provider’s identification information and medication codes. The

medication codes allow us to identify whether a prescription error exists and if so, what type of

error it is, given the diagnoses. The main outcome variable is denoted as PrescriptionError, a

binary variable indicating whether the prescribed medication meets the guideline for an encounter.

More specifically, for each encounter, we compile a complete list of diagnoses pertaining to the visit.

For each diagnosis, we refer to outpatient antibiotic prescription guidelines (Chua et al. 2019) and

define an antibiotic prescription as “appropriate” or “inappropriate”. At the encounter level, we

then aggregate the guideline recommendations across all diagnoses and define antibiotic prescrip-

tion as not recommended, if at least one diagnosis is inappropriate for an antibiotic prescription.

Finally, we compare this guideline recommendation with the actual antibiotic administered to the

patient and define PrescriptionError= 1 if the actual prescription does not match the guideline

recommendation, and PrescriptionError= 0 otherwise.

12 https://www.wsj.com/articles/SB10001424052702303678404579536284129494564

13 https://www.cms.gov/outreach-and-educationoutreachffsprovpartprogprovider-partnership-email-archive/2020-
04-03-mlnc-se
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Third, our data contain various patient characteristics, including patient demographics and

health conditions (e.g., patient age, gender, and diagnoses). We also observe whether the patient is

pregnant or not. This is relevant because pregnant patients require a different antibiotic regimen

(Ailes et al. 2018). We also collect information on patient comorbidity. The extant literature has

widely used the Elixhauser comorbidity index to control for the severity of patient health status

(see, e.g., Elixhauser et al. 1998, Berry Jaeker and Tucker 2017, Bartel et al. 2020). We follow these

studies to calculate the Elixhauser comorbidity index by first identifying relevant comorbidities

using the list of diagnosis codes of an encounter and then calculating the weighted sum of these

comorbidities.

Fourth, our data include unique patient and provider identifiers, which allows us to quantify

the familiarity between a patient and a provider. We follow the CPT definition14 and construct

EstablishedPatienti as 1 if a patient has seen the same provider within three years prior to

encounter i, and 0 otherwise. Distinguishing established from new patients is critical, because a

provider has different levels of prior information about different patients, which can also affect the

likelihood of prescription errors.

Provider and patient identifiers are also useful in conducting empirical analyses. Provider identi-

fiers allow us to include provider fixed effects and account for time-invariant provider heterogeneity

when we analyze the effect of telemedicine on prescription errors. In the sample construction, we

focus on providers who have prescription records for at least two encounters during the sample

period. The availability of patient identifiers enables us to track patients over time and analyze the

effect of telemedicine on health outcomes such as 7- or 30-day revisits related to severe UTI com-

plications, such as pyelonephritis (ICD-10-CM: N10) and urosepsis (ICD-10-CM: A41 and N39.0).

4.3. Summary Statistics

Table 1 provides summary statistics of our data sample, containing 14,305 in-person encounters

and 1,769 telemedicine counters between January 2020 and September 2021. Our main outcome

variable, PrescriptionError, has a mean of 0.668 and a standard deviation of 0.471 for all encoun-

ters (see column“All Encounters”). This summary statistic of prescription errors is consistent with

existing studies. For example, Chua et al. (2019) study antibiotic prescriptions for outpatients and

find 53.7% – 89.2% of the prescriptions are inappropriate or potentially inappropriate. Comparing

columns “In-person” and “Telemedicine”, we see the average likelihood of prescription errors is

0.698 (standard deviation of 0.459) for the encounters conducted in person and 0.425 (standard

14 CPT defines an established patient as “one who has received a professional service from the physician/qualified
healthcare professional or another physician/qualified healthcare professional of the exact same specialty and sub-
specialty who belongs to the same group practice, within the past three years.” Please see https://www.aapc.com/

blog/37138-how-to-determine-new-vs-established-patient-status/ for more details.
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deviation of 0.494) for the encounters conducted via telemedicine. The statistically significant t-

test (see column “T-Test”) suggests that visits via telemedicine are less likely to have prescription

errors than those conducted in person. This comparison lends model-free support for Hypothesis

1. However, the difference might not be a causal reflection of telemedicine utilization. For instance,

patients with lower risks could be more likely to use telemedicine, and these patients are less subject

to prescription errors, because of their uncomplicated conditions. We account for such confounding

factors in the regression models in section 5.

Table 1 Summary Statistics

Variable
All Encounters In-person Telemedicine T-Test

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. t p > |t|
Dependent Variable

Prescription Error 0.668 0.471 0.698 0.459 0.425 0.494 23.399 0.000
Independent Variable

Patient Age 45.869 21.168 46.148 21.261 43.616 20.263 4.750 0.000
Patient Female 0.899 0.302 0.897 0.304 0.914 0.280 -2.278 0.023
Patient Pregnant 0.015 0.121 0.015 0.123 0.009 0.095 2.109 0.035
Patient with Comorbidity 0.337 0.473 0.354 0.478 0.199 0.399 13.103 0.000
Established Patient 0.284 0.451 0.289 0.453 0.246 0.431 3.754 0.000

Number of Observations 16,074 14,305 1,769

Note: This table reports the summary statistics of the data utilized in the regression analyses. Dependent
variable is the likelihood of overall prescription errors (type I and type II combined). T-test compares variable
mean between telemedicine and in-person encounters.

The lower part of Table 1 summarizes the key independent variables on patient characteristics.

Female patients account for the majority of UTI visits, with approximately 90% visits for both in-

person and telemedicine encounters. We also notice that the two groups are slightly different along

several dimensions. Patients seen in person, on average, are older, have a higher pregnancy rate,

tend to have comorbidities and established patient-provider relationships compared with patients

using telemedicine. These differences suggest the treatment (i.e., telemedicine) is not randomly

assigned to patients, and controlling for patient heterogeneity is important when analyzing the

effect of telemedicine on prescription errors. This comparison also reinforces the importance of

addressing patient and provider selection using instrumental variable analysis, because the control

and treatment groups may also potentially differ across unobserved patient characteristics.

5. Empirical Strategy

In this section, we first discuss the empirical model that can be used to check the relationship

between prescription error and telemedicine. We then illustrate our approach to addressing poten-

tial endogeneity issues.
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5.1. Empirical Model

Our dependent variable is PrescriptionErrori, a binary variable that is equal to 1 if the prescribed

medication does not meet the guideline for encounter i (i.e., either type I error or type II error),

and is equal to 0 otherwise. Note an encounter may have multiple diagnoses. In the main analysis,

we consider an encounter as having a prescription error if a mismatch exists between the actual

prescription and the guideline recommendation based on any diagnosis of a visit. As a robust-

ness check, we consider alternative definitions of prescription error by calculating the fraction of

diagnoses with inappropriate prescriptions in section 6.2.5.

The independent variable of primary interest is Telemedicinei, which is equal to 1 if encounter i

is conducted via telemedicine, and 0 if conducted in person. As discussed in section 4.2, we are able

to separate the two modalities because our data have CPT codes that allow us to determine whether

an encounter is conducted via telemedicine. Note the use of telemedicine varies widely across

providers and patients and over time. The same provider may see some patients via telemedicine

and others in person. We also include a broad range of patient demographics and health conditions

(i.e., patient age, gender, pregnancy status, and Elixhauser comorbidity index) as well as a proxy

for the familiarity between a patient and a provider (EstablishedPatienti) as covariates.

Finally, we include a set of provider fixed effects (denoted by Provideri) to control for systematic

differences across providers. Provider fixed effects control for all time-invariant characteristics,

including provider demographics and other unobserved factors that might correlate with their

predispositions to use telemedicine or prescription decisions. We include a set of year-month fixed

effects (denoted by Timei) to control for the time trends of prescription errors. This approach is

motivated by the existing studies (see, e.g., Cliff 2014) that find more medical errors in July when

medical school graduates begin residencies.15

In the main analysis, we use a linear probability model. The relation between the dependent and

independent variables can be described using equation (1):

PrescriptionErrori = α0 +α1Telemedicinei +α2Xi +α3Provideri +α4Timei + εi, (1)

where the sample is constructed at the encounter level i. Xi denotes a set of patient characteristics

and the familiarity between the provider and patient for an encounter i, and εi denotes the error

term. We choose the linear probability model for two reasons. First, as Angrist and Pischke (2008)

note, linear probability models are easy to interpret and produce results similar to those obtained

using nonlinear models such as probit. Second, as Goldfarb and Tucker (2011) point out, estimating

a probit model with a large set of provider fixed effects is computationally limiting. Nonetheless,

15 Using alternative time fixed effects does not change the main conclusion of this study. See section 6.2.4 for more
details on robustness checks using alternative seasonality.
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we use a probit model as a robustness check and re-estimate the effect of telemedicine in Section

6.2.1. All results are consistent with the linear probability model.

5.2. Identification

Estimating equation (1) using OLS regression poses challenges to interpreting α1 as a causal effect,

because unobserved factors may affect both the decision to use telemedicine and the likelihood of

prescription errors.

From the provider side, systematic differences across providers can bias our estimates. Although

provider fixed effects will account for unobserved time-invariant provider heterogeneity, and the

year-month fixed effects will capture the common telemedicine-use trends as the pandemic pro-

gresses and government policy changes, unobserved time-varying provider characteristics may still

exist, leaving potential endogeneity issues. Moreover, patients with high-risk factors (who are often

more difficult to diagnose) may be less likely to be scheduled for telemedicine, because providers

prefer to examine these patients in person to gather more information and build a better clinical

rapport with the patients. In that case, the OLS estimate will bias the true effect of telemedicine. On

the other hand, patients with high-risk factors may be more likely to be scheduled for telemedicine,

due to the lack of mobility or concerns about COVID-19 infection, which again biases the true

effect of telemedicine.

To address these potential endogeneity issues, we use the neighboring telemedicine use in the

vicinity as an IV. More specifically, for encounter i, we first identify all encounters in the past two

weeks within a focal patient’s zip code. We then calculate the fraction of encounters conducted via

telemedicine (denoted by NeighborTelemedicinei) and use it as an IV.16 Similar IVs have been

employed to study technology adoption in the healthcare market. For example, Lu et al. (2018)

and Sun et al. (2020) use the neighboring technology adoption rate as an IV for a focal institution’s

adoption.

A valid IV needs to satisfy two conditions: (1) It must be correlated with the endogenous variable

(i.e., the relevance condition) and (2) it must be uncorrelated with the error term conditional on

covariates (i.e., the exclusion restriction). Our IV is likely to satisfy the relevance condition because

a focal patient’s use of telemedicine is likely to correlate with neighboring patients’ telemedicine

adoption, due to similar local service provision from neighboring providers, government initiatives,

or IT infrastructure. We formally show the positive relationship between the two in the first-

stage regression. Note that our model includes patient characteristics, provider fixed effects, and

time fixed effects. Therefore, the exclusion restriction is that the IV is not correlated with the

16 Our estimation remains robust when using alternative periods (e.g., 1 or 3 weeks) or an alternative definition (e.g.,
excluding the focal provider’s encounters) to construct IV. Results are available upon request.
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likelihood of antibiotic prescription errors for UTI encounters after controlling for these covariates.

One may be concerned that provider fixed effects are insufficient to control for unobserved time-

changing factors underlying the use of telemedicine, because the COVID-19 pandemic may have

a disproportionate impact across regions over time. Therefore, we include the local COVID-19

infection cases as additional control and check the robustness of our results in section 6.2.2.

We use two-stage least squares regressions to estimate the effect of telemedicine on prescrip-

tion errors. In the first stage, we regress the endogenous variable, Telemedicinei, over the IV,

NeighborTelemedicinei, and other independent variables. That is,

Telemedicinei = β0 +β1NeighborTelemedicinei +β2Xi +β3Provideri +β4Timei + ξi, (2)

where ξi denotes an error term. The coefficient β1 indicates the relation between the IV and the

endogenous variable. A positive and statistically significant coefficient would suggest that our IV

has sufficient explanatory power for the endogenous variable. We use the first-stage regression to

predict the endogenous variable (denoted by ̂Telemedicinei).

In the second stage, we regress the dependent variable, PrescriptionErrori over the predicted

endogenous variable, ̂Telemedicinei, and other independent variables. That is

PrescriptionErrori = γ0 + γ1 ̂Telemedicinei + γ2Xi + γ3Provideri + γ4Timei + ζi, (3)

where ζi denotes the error term. We are particularly interested in the coefficient γ1. A positive

coefficient would suggest that telemedicine increases the likelihood of prescription errors, whereas

a negative coefficient would suggest the opposite. Comparing α1 in equation (1) and γ1 in equation

(3) allows us to better understand the direction of the potential bias due to endogeneity issues.

6. Results

In this section, we show results from our analyses and perform a battery of robustness checks to

analyze the sensitivity of our results to various endogeneity concerns.

6.1. Main Results

Before presenting the main results, we check the relevance condition of the IV. Table 2 summarizes

the results from the first-stage regression. The coefficient of the IV, NeighborTelemedicine, is

significantly different from zero at the 1% significance level. The resulting first-stage F-statistic

is 99.20, suggesting that our IV has sufficient explanatory power. The positive coefficient implies

that the likelihood of telemedicine usage by an individual and her/his neighbors goes in the same

direction. Consistent with the summary statistics, we find that patients with comorbidity are less

likely to be seen via telemedicine, perhaps because providers prefer to see them in person to gather

more information about other health conditions and complications that these patients may have.
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Table 2 Results from the First-stage IV Regression

Variable Coefficient Standard Error

Neighbor Telemedicine 0.648 ∗ ∗∗ 0.065
Patient Age 0.0002∗ 0.0001
Patient Female −0.020 ∗ ∗∗ 0.007
Patient Pregnant −0.032 0.026
Patient with Comorbidity −0.053 ∗ ∗∗ 0.007
Established Patient 0.007 0.007
Provider Fixed Effects Included
Month Fixed Effects Included
Number of Observations 16,074
R-Squared 0.052
F-Test of Excluded Instruments 99.20***

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the first-stage of IV regression. The dependent variable is a binary indi-
cator for telemedicine. Independent variables are the IV, patient characteristics,
provider fixed effects, and time fixed effects. Robust standard errors are clustered
by provider.

The results from the second-stage IV regression are summarized in Table 3. The coefficient of

Telemedicine is negative and significantly different from zero at the 1% significance level, which

suggests that the use of telemedicine reduces the probability of prescription errors, thereby sup-

porting Hypothesis 1. A coefficient of −0.453 suggests that the use of telemedicine reduces the

likelihood of overall prescription errors by 45.3%. As we discussed in the hypothesis develop-

ment, the improved prescription decision via telemedicine may be driven by factors such as better

information provided by patients on existing medication, improved provider workflow, and better

patient-provider communication in virtual settings as opposed to in-person settings.

Table 3 Results from the IV Regression

Variable Coefficient Standard Error

Telemedicine −0.453 ∗ ∗∗ 0.136
Patient Age −0.0002 < 0.0003
Patient Female 0.058 ∗ ∗∗ 0.016
Patient Pregnant 0.018 0.040
Patient with Comorbidity 0.066 ∗ ∗∗ 0.015
Established Patient −0.083 ∗ ∗∗ 0.011
Provider Fixed Effects Included
Year-month Fixed Effects Included
Number of Observations 16,074

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results from
the second-stage of IV regression. The dependent variable is a binary indicator for
prescription error. Independent variables are telemedicine, patient characteristics,
provider fixed effects, and time fixed effects. Robust standard errors are clustered
by provider.
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As a comparison, Table 4 summarizes the results from the OLS regression. We see that the

coefficient of Telemedicine is negative and significantly different from zero at the 1% significance

level, which also supports Hypothesis 1. However, we note that the coefficient from the OLS

regression (i.e., −0.207) is smaller in magnitude than that from the IV regression, implying that

unobserved patient or provider factors that potentially increase the likelihood of prescription errors

are positively correlated with telemedicine. For instance, patients with high-risk factors are more

likely to use telemedicine due to mobility issues or concerns about COVID-19 infections, and these

patients are more prone to prescription errors because of their complex cases. Therefore, one will

underestimate the effect of telemedicine without accounting for potential endogeneity issues in the

data.

Table 4 Results from the OLS Regression

Variable Coefficient Standard Error

Telemedicine −0.207 ∗ ∗∗ 0.021
Patient Age −0.0003 0.0003
Patient Female −0.053 ∗ ∗∗ 0.015
Patient Pregnant 0.025 0.042
Patient with Comorbidity 0.079 ∗ ∗∗ 0.013
Established Patient −0.085 ∗ ∗∗ 0.011
Provider Fixed Effects Included
Year-month Fixed Effects Included
Number of Observations 16,074
Adjusted R-Squared 0.210

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the OLS regression. The dependent variable is a binary indicator for pre-
scription error. Independent variables are telemedicine, patient characteristics,
provider fixed effects, and time fixed effects. Robust standard errors are clustered
by provider.

6.2. Robustness Checks

In this section, we analyze the sensitivity of our results by performing five robustness checks. The

first robustness check uses an alternative empirical model. The second robustness check includes

COVID-19 infections as an additional control. The third robustness check controls for unobserved

time-invariant and time-varying patient local factors. The fourth robustness check includes alter-

native seasonality controls. The final robustness check uses an alternative definition of prescription

errors.

6.2.1. Alternative Model Specification

In the main analysis, we use the linear probability model to estimate the effect of telemedicine.

Given that the dependent variable is binary, we use an IV probit model to re-estimate the effect of
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telemedicine to alleviate concerns of estimation bias due to model selection. The results from this

robustness check are summarized in Table 5. We see the coefficient of Telemedicine is negative and

significantly different from zero at the 1% significance level. Note the coefficient from the probit

model is difficult to interpret directly. Therefore, we calculate the marginal effect at the mean and

find that the estimate (i.e., −0.444) is similar to the average effect (i.e., −0.453) from the linear

probability model in Table 3. The result corroborates the validity of the linear probability model

in the main analysis.

Table 5 Results from the IV Regression (Probit Model)

Variable Coefficient Standard Error

Telemedicine −1.384 ∗ ∗∗ 0.290
Marginal Effect −0.444 ∗ ∗∗ 0.091
Patient Characteristics Included
Provider Fixed Effects Included
Year-month Fixed Effects Included
Number of Observations 15,051

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the IV probit model. The dependent variable is a binary indicator for
prescription error. Independent variables are telemedicine, patient characteris-
tics, provider fixed effects, and time fixed effects. Robust standard errors are
clustered by provider. The reduction in the number of observations is due to
dropped providers without variation in the outcome variable.

6.2.2. Control for Local COVID-19 Infections

COVID-19 infections may affect both telemedicine and prescription errors. For instance, the

COVID-19 situation may affect patients’ and providers’ use of telemedicine because of concerns

about person-to-person infections. Besides, COVID-19 severity also relates to the average local

health conditions and may complicate prescription decisions for patients. To address this concern,

we further control for local COVID-19 infections of the county where a patient is located.

Table 6 summarizes the results from two models, in which we include (1) the number of COVID-

19 infections on the same day as the encounter (denoted by SameDayInfection) and (2) the average

number of COVID-19 infections in the week prior to the encounter (denoted by PastWeekInfection),

respectively. The coefficients for COVID-19 infections are not statistically significant, confirming

that patient and provider selections related to COVID-19 have little effect on the UTI sample.

Parameter estimates for telemedicine are not significantly different from each other or from the

estimate in the main analysis, implying that our results are not driven by regional COVID-19

situations.
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Table 6 Results from the IV Regression (Control for Local COVID-19 Infections)

Variable
Model 1 Model 2

Coefficient Standard Error Coefficient Standard Error

Telemedicine −0.445 ∗ ∗∗ 0.137 −0.452 ∗ ∗∗ 0.138
Same-Day Infection −0.063∗ 0.034
Past-Week Infection −0.005 0.052
Patient Characteristics Included
Provider Fixed Effects Included Included
Year-month Fixed Effects Included Included
Number of Observations 16,074 16,074

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results from the IV regression,
with additional control for COVID-19 infections of the county where a patient locates. We re-scale the
number of infections by a factor of 1,000 for better representation of the estimates. The dependent
variable is a binary indicator for prescription error. Independent variables are telemedicine, COVID-19
infections, patient characteristics, provider fixed effects, and time fixed effects. Robust standard errors
are clustered by provider.

6.2.3. Control for Unobserved Patient Local Factors

In the main analysis, we explain that the proposed IV is likely valid for two reasons. First, a focal

patient’s use of telemedicine may correlate with neighboring adoption (i.e., the IV) due to peer

influence, similar provider service, and IT infrastructure. Second, neighboring adoptions should

not directly affect a provider’s prescription decisions for an individual visit, especially considering

that we construct the IV using data prior to a focal patient’s visit. Nonetheless, unobserved macro

factors could be present, such as patients within the same neighborhood being more affluent, more

educated, or having access to high-quality doctors. These macro factors may correlate with the IV

and directly influence prescription errors.

To address such concern, we impose patient zip code fixed effects, ZipCode, in addition to

provider fixed effects. The rationale is that the patient zip code fixed effects can account for

unobserved patient-level macro factors, including patients’ average wealth and education level,

as well as access to providers of varying quality across different regions. The result is shown in

Model 1 of Table 7. The treatment effect from the second-stage estimation remains robust, both

qualitatively and quantitatively similar to our main results.

Another related concern is that the dynamic supply of providers might differ by location and

time. For instance, new provider appointments typically occur in the third quarter each year after

the residency training ends. If new providers in certain areas receive better training (e.g., less

likelihood of prescription errors) and are more tech-savvy (e.g., more likely to use telemedicine),

our estimate can be biased. To address such concerns related to unobserved location heterogeneity

over time, we impose additional controls, namely ZipCode×Quarter fixed effects. The results are

shown in Model 2 of Table 7, with the second-stage estimation results remaining robust.
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Table 7 Results from the IV Regression (Control for Unobserved Patient Local Factors)

Variable
Model 1 Model 2

Coefficient Standard Error Coefficient Standard Error

Telemedicine −0.413 ∗ ∗∗ 0.125 −0.478 ∗ ∗∗ 0.139
Zip Code Fixed Effects Yes Yes
Zip Code × Quarter Fixed Effects No Yes
Patient Characteristics Included Included
Provider Fixed Effects Included Included
Year-month Fixed Effects Included Included
Number of Observations 16,074 16,074

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results from the IV regression, with
additional controls for patient location fixed effects in model 1, and time-varying location-heterogeneity in model
2. The dependent variable is a binary indicator for prescription error. Independent variables are telemedicine,
patient characteristics, and provider fixed effects. Robust standard errors are clustered by provider.

6.2.4. Alternative Seasonality Controls

In the main analysis, we have included year-month fixed effects. Given that the data are arranged

at the encounter level and that patient or provider behaviors could depend on the day of the week,

we further include day-of-week fixed effects. Model 1 of Table 8 reports the results. We can see that

the coefficient estimate is similar to the main analysis. In addition, our results are robust to more

granular time fixed effects—a combination of day-of-week and year-week fixed effects—as shown

in Model 2 of Table 8.

Table 8 Results from the IV Regression (Control for Alternative Seasonality)

Variable
Model 1 Model 2

Coefficient Standard Error Coefficient Standard Error

Telemedicine −0.452 ∗ ∗∗ 0.136 −0.466 ∗ ∗∗ 0.141
Day of Week Fixed Effects Included Included
Year-month Fixed Effects Included
Year-week Fixed Effects Included
Patient Characteristics Included Included
Provider Fixed Effects Included Included
Number of Observations 16,074 16,074

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results from the IV regression with
alternative seasonality controls. The dependent variable is a binary indicator for prescription error.
Independent variables are telemedicine, patient characteristics, provider fixed effects, and different
combinations of time fixed effects. Robust standard errors are clustered by provider.

Another concern is that the main findings could be driven by some unobserved shocks of certain

periods (e.g., lockdowns due to COVID-19). To check if our findings are subject to this concern,

we iteratively replicate the IV analysis by omitting one month in each estimation. Table 9 summa-

rizes the results from this leave-month-out analysis. The treatment estimate remains similar both

qualitatively and quantitatively, which implies that our results are unlikely driven by time-varying

unobserved seasonality.
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Table 9 Leave-Month-Out Analysis

Omitted Month Coefficient Standard Error Number of Observations

Year 2020
January −0.445 ∗ ∗ 0.141 15,278
February −0.457 ∗ ∗∗ 0.154 15,296
March −0.472 ∗ ∗∗ 0.159 15,281
April −0.473 ∗ ∗∗ 0.140 15,334
May −0.462 ∗ ∗∗ 0.131 15,338
June −0.445 ∗ ∗∗ 0.142 15,259
July −0.476 ∗ ∗∗ 0.146 15,267
August −0.537 ∗ ∗∗ 0.138 15,258
September −0.412 ∗ ∗∗ 0.138 15,244
October −0.441 ∗ ∗∗ 0.138 15,271
November −0.432 ∗ ∗∗ 0.131 15,313
December −0.443 ∗ ∗∗ 0.132 15,319

Year 2021
January −0.474 ∗ ∗ 0.131 15,355
February −0.433 ∗ ∗∗ 0.138 15,335
March −0.440 ∗ ∗∗ 0.138 15,201
April −0.463 ∗ ∗∗ 0.134 15,243
May −0.464 ∗ ∗∗ 0.137 15,299
June −0.446 ∗ ∗∗ 0.138 15,243
July −0.445 ∗ ∗∗ 0.136 15,226
August −0.471 ∗ ∗∗ 0.138 15,243
September −0.418 ∗ ∗∗ 0.142 15,323

Patient Characteristics Included
Provider Fixed Effects Included
Year-month Fixed Effects Included

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the IV results, with
each sample omitting one month from the analysis. The dependent variable is a binary
indicator for prescription error. Independent variables are telemedicine, patient character-
istics, provider fixed effects, and time fixed effects. Robust standard errors are clustered by
provider.

6.2.5. Alternative Definition of Prescription Errors

In the main analysis, we consider an encounter as having a prescription error if one or more

diagnoses have inappropriate prescriptions of antibiotics relative to the guideline suggestions. In

this robustness check, we use an alternative definition of prescription errors. More specifically, we

denote by Prescriptionij a dummy, which is equal to 1 if encounter i has diagnosis j that (1)

requires antibiotics but the provider does not prescribe antibiotics or (2) does not require antibiotics

but the provider prescribes antibiotics, and 0 otherwise. The fraction of inappropriate prescriptions

is
∑J

j Prescriptionij/J , where J denotes the number of diagnoses in encounter i.

Table 10 summarizes the results for the scenario in which we consider an encounter as hav-

ing a prescription error if the fraction of inappropriate prescriptions is equal to or greater than

0.5. That is, PrescripionErrori = 1 if
∑J

j Prescriptionij/J ≥ 0.5, and PrescripionErrori = 0 if∑J

j Prescriptionij/J < 0.5. We see the coefficient is negative and significantly different from zero



Kim, Sun, and Wang: Telemedicine and Prescription Errors
24

at the 1% significance level. The estimate in Table 10 is not significantly different from the estimate

in Table 3, which suggests that our results are robust to alternative definitions of prescription

errors.

Table 10 Results from the IV Regression (Alternative Definition of Prescription Error)

Variable Coefficient Standard Error

Telemedicine −0.433 ∗ ∗∗ 0.141
Patient Characteristics Included
Provider Fixed Effects Included
Year-month Fixed Effects Included
Number of Observations 16,074

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the IV regression. The dependent variable is prescription error (with an
alternative definition). Independent variables are telemedicine, patient charac-
teristics, provider fixed effects, and time fixed effects. Robust standard errors
are clustered by provider.

7. Heterogeneous Effects

In this section, we explore evidence of heterogeneous effects corresponding to Hypothesis 2 and

Hypothesis 3. We conduct the heterogeneity analysis by including the full interaction terms of

Telemedicine and our variables of interest, and the results are reported in Table 11.

Table 11 Heterogeneous Effects

Variable
Model 1 Model 2

Coefficient Standard Error Coefficient Standard Error

Telemedicine −0.252 ∗ ∗ 0.115 −0.505 ∗ ∗∗ 0.104
Telemedicine×High Patient Volume −0.341 ∗ ∗∗ 0.124
Telemedicine×Established Patient 0.199 ∗ ∗ 0.084
Patient Characteristics Included Included
Provider Fixed Effects Included Included
Year-month Fixed Effects Included Included
Number of Observations 16,074 16,074

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the heterogeneous effects by patients’ and providers’
characteristics. The dependent variable is a binary indicator for prescription error. The key independent variables
are telemedicine and the interaction terms of telemedicine with our variables of interests. High Patient Volume
is a binary indicator of whether a provider’s past year UTI patient volume is above the median, and Established
Patient is a binary indicator of whether a patient has seen a provider for UTI treatment within three years prior to
the current visit. We also include the complete list of patient characteristics, provider fixed effects, and time fixed
effects. Robust standard errors are clustered by provider.

From the provider side, we measure providers’ patient volume using the periodic volume

of UTI patients one year before our sample period. We then construct a binary measure

HighPatientV olume, which equals one if a provider’s UTI patient volume is above the median.

From model 1, we observe that the treatment effect is greater for providers who practice at a larger
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scale than those at a smaller scale (Telemedicine×High Patient Volume = −0.341, p < 0.01). As

discussed earlier, providers who are used to seeing high-volume UTI patients may be able to reap

the benefits of telemedicine despite limited sensory and tactile information in a virtual setting,

because they benefit from economy of scale and are less affected by communication and technical

frictions via the virtual channel. This result lends support to Hypothesis 2.

In model 2, we investigate whether an established patient-provider relationship moderates the

treatment effect. The results suggest telemedicine has a smaller effect on established patients

(Telemedicine×Established Patient = 0.199, p < 0.05). As discussed earlier, providers are more

familiar with established patients. Comparatively, providers lack prior information about new

patients. Therefore, the additional information provided by established patients is less informa-

tive than that provided by new patients, and the marginal benefit of telemedicine to established

patients is smaller than that to new patients. This result provides support for Hypothesis 3. It

also corroborates the first mechanism suggested in Hypothesis 1, which states that telemedicine

helps facilitate providers’ access to medication information, and thus providers can make better

prescription decisions via telemedicine than the offline channel.

8. Error Types and Health Outcomes

In this section, we first explore the overall errors by decomposing them into type I and type II

prescription errors to gain further insights. We then examine whether telemedicine has any effect

on patient health outcomes.

8.1. Type I and Type II Errors

We disentangle the overall prescription errors into two categories, as described in Figure 1: (1)

prescribing when not recommended by guidelines (type I errors) and (2) not prescribing when

recommended (type II errors).

Figure 1 Illustration of Type I and Type II Errors
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Table 12 summarizes the results from two separate IV regressions with binary indicators for

type I and type II errors as the dependent variables. From the left side of the table, we see the

coefficient of Telemedicine is negative and significantly different from zero at the 1% significance

level, which suggests that telemedicine reduces the likelihood of type I errors. From the right side of

the table, we see the coefficient estimate of Telemedicine is small and insignificant, which suggests

telemedicine does not affect the likelihood of type II errors. In other words, the main finding of the

reduction in the likelihood of overall prescription error is driven by the reduction in type I errors.

Table 12 Results from the IV Regression (Type I and Type II Errors)

Variable
Type I Errors Type II Errors

Coefficient Standard Error Coefficient Standard Error

Telemedicine −0.447 ∗ ∗∗ 0.121 −0.006 0.046
Patient Characteristics Included Included
Provider Fixed Effects Included Included
Year-month Fixed Effects Included Included
Number of Observations 16,074 16,074

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results from the IV regression.
The dependent variables are binary indicators for type I and type II errors. Independent variables are
telemedicine, patient characteristics, provider fixed effects, and time fixed effects. Robust standard
errors are clustered by provider.

One potential explanation in the asymmetry between type I and II errors is the differing con-

sequences. Despite serious long-term public health implications related to antibiotic resistance, an

individual provider bears little legal or financial consequences for prescribing antibiotics when not

recommended (type I errors). This minimal consequence for error may leave room for differing

prescription errors across encounter settings. By contrast, not prescribing when recommended by

guidelines (type II errors) has imminent legal and financial consequences. An untreated UTI can

have serious health consequences such as kidney damage or life-threatening sepsis.17 These out-

comes can trigger malpractice lawsuits regardless of whether a patient is seen virtually or in person,

which may explain the trivial difference in type II errors across care delivery settings.

8.2. Health Outcomes

Our findings in section 8.1 suggest that telemedicine reduces the likelihood of type I errors without

affecting type II errors for UTI patients. This observation leads to a natural follow-up question—

how does telemedicine affect patient health outcomes? On the one hand, the reduction in type

I errors clearly diminishes the long-term risk of antibiotic resistance, which the IDSA refers to

as “collateral damage,” describing ecological adverse effects of antibiotic therapy that results in

17 https://www.mayoclinic.org/diseases-conditions/urinary-tract-infection/symptoms-causes/syc-20353447
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the development of drug-resistant organisms and infection with multi-drug-resistant organisms.

As Sebesta et al. (2020) note, “The small increases in collateral damage over so many exposures

magnify the impact.” In other words, although drug resistance is an important public health concern

that manifests in the long run, its effect on patient health outcomes is likely minimal in the short

run. On the other hand, the reduction in necessary antibiotic prescriptions can put patients at

risk of undertreatment, and we may observe changes in the UTI-related complications such as

pyelonephritis or urosepsis shortly after prescriptions18 in our data.

To empirically examine the clinical effects of telemedicine, we track patients’ subsequent visits

and generate 7- and 30-day revisit indicators that equal 1 if a patient revisited the hospital for

UTI-related complications (e.g., pyelonephritis or urosepsis), and 0 otherwise. Table 13 summarizes

the results. We see the coefficient of Telemedicine is small and insignificant, which indicates that

telemedicine does not increase UTI-related complications in the short term. The finding implies

that the reduction in the likelihood of antibiotic prescription errors does not come at the sacrifice

of worse health outcomes in the short run. The result is also in line with the lack of significance in

the relationship between type II prescription errors and telemedicine, though it may also be due

to the rare occurrence of complications.

Table 13 Results from the IV Regression (Health Outcomes)

Variable
7-Day Complication 30-Day Complication

Coefficient Standard Error Coefficient Standard Error

Telemedicine −0.003 0.003 0.004 0.005
Patient Characteristics Included Included
Provider Fixed Effects Included Included
Year-month Fixed Effects Included Included
Number of Observations 16,074 16,074

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results from the IV regres-
sion. The dependent variables are binary indicators for 7-day and 30-day UTI complication.
Independent variables are telemedicine, patient characteristics, provider fixed effects, and time
fixed effects. Robust standard errors are clustered by provider.

9. Conclusion

Until the COVID-19 crisis, regulatory, financial, and cultural barriers were preventing telemedicine

from living up to its potential to increase access to healthcare. The COVID-19 pandemic brought

down many of these barriers at once, thus introducing new questions for the academics and the

industry that had been exploring the factors contributing to adoption and ways to spur adoption.

18 https://www.mayoclinic.org/diseases-conditions/urinary-tract-infection/symptoms-causes/syc-20353447
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In this paper, we study the following questions: How does telemedicine affect prescription errors,

and what does telemedicine mean for patient outcomes?

We examine the case of antibiotic prescription errors for UTIs by considering two types of pre-

scription error: prescribing when not recommended by guidelines (type I errors) and not prescribing

when recommended (type II errors). Using OLS regression, we find a significant reduction (20.7%)

in the likelihood of overall prescription errors (type I and II errors combined) when the clinical

setting is virtual as opposed to in-person. To address endogeneity issues related to the adoption of

telemedicine, we employ various fixed effects as well as an IV approach that reveals an even greater

reduction (45.3%). Our results are consistent through a battery of robustness checks.

The effect of telemedicine is not uniform across providers and patients. We find that providers

with high patient volume (i.e., have more experience in treating UTIs) have a larger reduction

in prescription errors via telemedicine. On the patient side, patients who have an established

relationship with their provider experience a smaller reduction in antibiotic prescription errors.

These results provide valuable insights for the insurance industry and policymakers, as they need to

consider prescription errors in their efforts to expand telemedicine use among particular segments

of patients and providers.

We further investigate prescription errors by disentangling type I from II errors and show that the

reduction in errors is mainly driven by a reduction in type I errors as opposed to type II errors. This

finding leads to further health implications. First, type II errors may leave UTIs untreated, causing

potentially serious complications. Our finding of only minimal change in type II errors implies

little effect on such complications. We also directly check patient health outcomes such as kidney

infection and sepsis and find no statistical difference between virtual and in-person encounters.

Second, type I errors have potential health implications related to antibiotic overprescription.

Antibiotic overprescription is a major public health concern, and its impact may be measured by

infections with drug-resistant microorganisms in the long run. Future research could examine the

effect of telemedicine use on long-term health outcomes with long-panel patient-encounter data.

One concern in interpreting our results is that the introduction of the telehealth system may

be accompanied by upgrades in other health IT systems (such as EHR or HIE). If this is the

case, providers might be able to access better information via the upgraded system. The reduction

in prescription errors could then be due to those confounding IT infrastructural changes. Note

that we include provider fixed effects throughout our analyses, which already factors in time-

invariant IT capabilities at the provider level. Conversations with providers in several healthcare

institutions that adopted telehealth revealed that during telemedicine consultations, they could

access the same patients’ information as in-person settings. Although this evidence significantly

alleviates our concern, we cannot completely rule out the possibility that the improved prescription
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decisions might come from time-varying confounding IT adoptions, unless detailed information on

the telemedicine interface and IT adoptions for each provider become available to researchers.

Our findings have several broader implications for a variety of stakeholders. First, for patients

who are hesitant to try telemedicine, our results demonstrate a major potential benefit—a lower

likelihood of prescription errors. In our data, we also show that the likelihood of revisits due to

severe complications is not statistically different for telemedicine and in-person care settings. Given

that more accurate prescribing can contribute to a potential reduction in drug resistance in the

long run, our results can provide useful information to patients who are contemplating the use

of telemedicine. Second, our results imply that providers and hospital managers should consider

prescription errors as a performance metric in deploying telemedicine. This is because reducing

prescription errors can benefit patient outcomes while reducing drug costs by stemming unnecessary

prescriptions. Our findings are also relevant to insurers because such cost savings can improve their

bottom line as well. Third, our findings also point to public policy implications. With antibiotic

overprescription being a major public health concern, our findings suggest an additional benefit

of telemedicine when the federal and state governments consider policy changes to spur further

expansion of virtual clinical settings. We also show that prescription changes via telemedicine visits

do not lead to negative patient outcomes related to type II errors and associated undertreatment.

Therefore, policy makers may safely extend temporary incentives for telemedicine beyond the

pandemic. Although the effect of telemedicine on prescription errors may apply primarily to non-

COVID-19 related conditions, policy makers need to continue monitoring the use of telemedicine,

the number of prescription errors for different medical conditions and drugs, and corresponding

patient outcomes as well as costs to decide whether to further incentivize telemedicine use.
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