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Abstract

Experiments are an important tool to measure the impacts of interventions. However,
in experimental settings with one-sided noncompliance, extant empirical approaches
may not produce the estimates a decision-maker needs to solve their problem. For ex-
ample, these experimental designs are common in digital advertising settings, but they
are uninformative of decisions regarding the intensive margin—how much should be
spent or how many consumers should be reached with a campaign. We propose a so-
lution that combines a novel multi-cell experimental design with modern estimation
techniques that enables decision-makers to recover enough information to solve prob-
lems with an intensive margin. Our design is straightforward to implement. Using
data from advertising experiments at Facebook, we demonstrate that our approach
outperforms standard techniques in recovering treatment effect parameters. Through
a simple advertising reach decision problem, we show that our approach generates
better decisions relative to standard techniques.
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1 Introduction

Experiments are considered a particularly reliable tool to measure the causal effects of
interventions. However, decision-makers who conduct experiments may be unsatisfied
solely with measuring these effects; they need more information to inform specific deci-
sions they have to make. Yet in a variety of settings, a decision-maker’s ability to experi-
ment is limited because they cannot fully control treatment assignment. This can restrict
the collection of the information necessary to make these decisions.

In such cases, the most common experimental route involves randomizing eligibility to
receive treatment. For example, firms want to measure the effectiveness of their digital ad
campaigns, but they cannot directly randomize advertising exposure. Instead, they ran-
domly assign consumers to be eligible or ineligible to be exposed to ads. This experimental
design, where noncompliance is one-sided, is not only popular for measuring online ad-
vertising effects (see Johnson (2022) for a recent review) but it is also used in economics,
political science, and medicine.1

This design provides valuable information: it enables the researcher to recover the aver-
age treatment effect on the treated (ATT). This parameter is important because it quan-
tifies the effect of the treatment on the observable subset of units that were eligible to
receive treatment; alternatively, it quantifies the loss that would have been experienced
had the experiment not been conducted. In addition, when compared with costs, it shows
whether an existing policy, such as the current advertising policy used by firms, is benefi-
cial. However, this treatment effect parameter may be of limited assistance when it comes
to decisions with an intensive margin, such as when an advertiser must decide how many
consumers to reach or how large a budget to set.

In this paper, we propose an approach that allows the researcher (and the decision-maker)
to obtain the information necessary to make these types of decisions. Our approach com-
bines a novel multi-cell experimental design with modern estimation techniques to re-
cover the marginal treatment effect (MTE) function. This function allows us to inform
these decisions and to recover the most common treatment effect parameters of inter-
est, including the ATT. Without our experimental design, we explain why implementing
these estimation techniques would require non-trivial additional restrictions. We illus-
trate our approach through a series of simulations that are calibrated using advertising
experiments at Facebook. We show that our proposed experimental design yields more

1Experiments with one-sided noncompliance have also been used in the context of: online A/B tests
(Deng et al., 2019); clinical trials (Sommer and Zeger, 1991); breast self-examination treatments (Mealli et al.,
2004); interventions to incentivize voter turnout (Green et al., 2003); effects of job training (Schochet et al.,
2008) and job assistance (Crépon et al., 2013) programs; the impacts of access to microcredit (Crépon et al.,
2015); the effects of deworming drugs on children’s health and education (Miguel and Kremer, 2004); and
housing voucher policies (Chetty et al., 2016).
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precise estimates of the MTE function relative to those that would be obtained from the
typical experiment design. Using these estimates, we demonstrate that our method pro-
duces solutions to a decision-maker’s problem that can differ materially from those that
would be obtained using standard techniques.

To introduce our setting, we consider an advertiser deciding what fraction of users to
reach with advertising from among a target audience.2 Using this decision problem, we
describe the typical experimental design with one-sided noncompliance and define the
policy relevant treatment effect (PRTE), which is how we refer to the treatment effect pa-
rameter necessary to solve such a decision problem. In doing so, we explain why this
experimental design does not deliver this object unless nontrivial restrictions are imposed.

Our empirical approach is inspired by the estimation method in Brinch et al. (2017), who
show how to obtain an approximation to the MTE function using a discrete instrumental
variable that generates variation in the probability of treatment. We point out that direct
application of Brinch et al. (2017) to a single-cell experiment with one-sided noncompli-
ance is infeasible because the data contain too few moments to fully recover the set of
parameters, and explain why potential parameter restrictions would impose a nontriv-
ial form of structure on the endogeneity of exposure and/or treatment. As we show in
Section 4.3, we lack any empirical or theoretical guidance to justify these restrictions.

The multi-cell experimental design we propose remedies this underidentification prob-
lem and enables the researcher to obtain a credible approximation of the MTE function.
Our design first randomly allocates units across C cells, and then within each cell, units
are once again randomly split into test and control groups. Consistent with typical lim-
itations around treatment assignment in practice, each cell features an experiment with
one-sided noncompliance. We show how this multi-cell design resolves the estimation
problem by generating a sufficient number of moments to approximate the MTE function
using a polynomial of degree C.

Implementing our approach requires the researcher to generate sufficient variation in
the propensity score—the probability of treatment given eligibility—across experimen-
tal cells. In Section 3.5, we provide some practical guidance on how to achieve this even
under the common case of one-sided noncompliance found in digital advertising settings.
Fortunately, even though researchers cannot directly control treatment assignment, they
can influence the probability of treatment by adjusting the budget per user. This quantity
depends on the relative sizes of the cells and how the budget is distributed across cells—
decisions that are under the researcher’s control. Critically, relative to a single-cell test, our
method does not require the overall budget allocated to the experiment to be increased.

2In Section 2.3, we explain why this problem is equivalent to one where the advertiser sets a budget
level.

2



We apply our method to data generating processes (DGPs) calibrated to an advertising
experiment at Facebook.3 We first consider simple cubic polynomials for the MTE func-
tion and show that our method can perform well in approximating it, and contrast these
results to what could be obtained in a single-cell design using Brinch et al. (2017) through
the imposition of additional parameter restrictions. Although these parameter restrictions
remedy the underidentification problem, we find they produce unreliable estimates of the
MTE function. Moreover, we are unaware of any way to assess which of these restrictions
is most justifiable.

The differences across methods in their MTE function estimates lead to a natural question:
how much do these differences matter for the decision-making problem? To shed light on
this question, we revisit the firm’s decision regarding the fraction of target consumers to
reach with their advertising using a simple example. We find that our approach succeeds
in virtually eliminating any losses in expected profits across different DGPs. In turn, un-
der specific circumstances, while certain parametric restrictions combined with the direct
application of Brinch et al. (2017) to data from a single-cell design can perform well in this
regard, such an approach is more likely to yield high losses in expected profit.

We also consider an example in which the underlying MTE function is more complex. Our
goal is use this more difficult case to assess the role the number of cells and values taken
by the propensity score play in implementing our method. In particular, we seek to obtain
evidence as to whether there can be concrete guidance to practitioners concerning how to
choose these objects. We find this not to be the case both for approximating the MTE
function and for minimizing expected profit losses. Furthermore, imposing common as-
sumptions from the causal inference literature such as monotone treatment response does
not remedy this lack of guidance. Nevertheless, we demonstrate that it is straightforward
for practitioners to reallocate a budget designated for a single-cell experiment across many
cells given expected values for the propensity scores. Consequently, it is always possible
to convert a single-cell design into a multi-cell one given a number of cells and propensity
score values without altering the original budget chosen for conducting the experiment.

Our paper makes three contributions. First, we contribute to the broad literature on esti-
mating treatment effects in experiments with one-sided noncompliance. In particular, we
develop an experimental design that is built to leverage modern estimation techniques
when only eligibility to receive treatment can be randomized. These techniques have their
origins in the work of Björklund and Moffitt (1987) and Heckman and Vytlacil (2005), who
showed identification of the MTE function using a continuous instrumental variable with
observational data. More recently, recognizing that instruments are often discrete, Brinch
et al. (2017) showed how to recover polynomial MTE functions, or, equivalently, how to
recover a polynomial approximation to the MTE function, whereas Mogstad et al. (2018)

3We could apply our method to data from a multi-cell experiment if we had access to such data.
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showed how to obtain partial identification of the MTE.4 Neither study considers how
these methods can be used in combination with experimental data specifically, and in par-
ticular when the design of the experiment can be altered to enhance estimation. This is
our primary contribution: to tailor the experimental design to exploit these methods.

Second, we add to the expanding literature on estimating online advertising effects. Much
of this work focuses on recovering the intent-to-treat (ITT) or ATT parameters using exper-
iments with one-sided noncompliance.5 Obtaining such estimates is useful to document
advertising effects and to inform an advertiser’s extensive margin decision of whether to
advertise (a “go/no go” decision). However, an advertiser is unable to apply these esti-
mates to choose the intensive margin of how many consumers to reach with advertising.
Our paper makes a contribution by starting to fill this gap in the literature using an ap-
proach that embeds a causal inference setup in the advertiser’s optimization problem. To
the best of our knowledge, the only other paper that uses the MTE framework in mar-
keting is Daljord et al. (2022), who apply Mogstad et al. (2018) to data from a promotion
targeting experiment with two-sided noncompliance conducted with a hotel chain.

Third, our paper is related to work that examines an advertiser’s decision problem. Early
work in this area sought to determine the optimal budget allocation given an aggregate
advertising response model (Sethi, 1977; Holthausen Jr. and Assmus, 1982; Simon, 1982;
Basu and Batra, 1988). More recent work studies this problem in online advertising set-
tings (Pani et al., 2017; Baardman et al., 2019; Zhao et al., 2019; Geng et al., 2021). How-
ever, none of these papers have causal inference in mind. Waisman et al. (2022b) provides
a framework to recover treatment effect parameters that account for parallel experimen-
tation by competitors to inform an advertiser’s extensive margin decision. A different
strand of this literature connects causal inference with advertising decisions, specifically
a firm’s optimal bidding strategy in real-time bidding (RTB) environments (Lewis and
Wong, 2018; Waisman et al., 2022a). Neither of these papers obtain the MTE, which is un-
necessary for the decision problems they study. With the MTE, we can solve a broader set
of advertising decision problems, though our method does not account for other experi-
mentation costs that would be relevant in RTB settings.

The rest of this paper proceeds as follows. Section 2 introduces the typical experimental
design through the advertiser’s decision problem and shows this design does not provide
the information needed to solve this problem. Section 3 presents our empirical strategy
that consists of a novel multi-cell experimental design, an estimation technique to recover
an approximation to the MTE function, and discusses practical issues in implementing
this design. Section 4 uses data from Facebook advertising experiments to illustrate the
benefits of our methodology relative to a direct application of Brinch et al. (2017). Section

4We are working to incorporate our multi-cell design into the methods in Mogstad et al. (2018).
5Examples include Lewis and Reiley (2014); Brodersen et al. (2015); Johnson et al. (2016, 2017a,b); Gordon

et al. (2019); Sahni et al. (2019); Barajas and Bhamidipati (2021); Gui et al. (2021); Gordon et al. (2022).
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5 concludes.

2 Setting

In this section, we consider a specific decision problem faced by a firm, that of what frac-
tion of a target audience they advertise to in order to maximize expected profits. We focus
on this problem because it enables us to introduce our model, to describe the typical ex-
perimental design with one-sided noncompliance, and to explain why the treatment effect
obtained from this design (the ATT) does not solve the decision-maker’s problem.

2.1 Firm’s advertising problem

We introduce our model by considering a specific decision problem. Suppose a firm
wishes to choose the fraction of consumer from a target segment to reach with advertising
to maximize expected profit. As we show below, this decision is equivalent to choosing
an advertising budget to reach a given proportion of consumers.

Let D be an indicator for whether a unit (user) is treated (exposed to advertising), Y1 be
the outcome when D = 1, and Y0 be the outcome when D = 0. The observed outcome
can be written as:

Y = DY1 + (1− D)Y0. (1)

Let ν be the fraction of units exposed to the treatment. Assume that the firm can convert
outcomes into monetary amounts by multiplying them by a known constant, δ. Let the
cost of treating a fraction ν of units be given by a known cost function, κ(ν). Then the
firm’s expected profit maximization problem is:

max
ν∈[0,1]

(δ× {νE [Y|D = 1] + (1− ν)E [Y|D = 0]} − κ(ν)) (2)

To solve this problem, the firm needs to compute the conditional expectations above,
which are unknown. The specific object the firm needs to know to solve this problem
is what we refer to as the policy relevant treatment effect (PRTE). We now discuss how
this parameter can be estimated.
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2.2 Experimental design

There are several methods to estimate the conditional expectations in expression (2) from
data; arguably, one preferred way to collect these data is by running an experiment, ideally
one in which treatment itself is randomly assigned to the experimental units. However, it
is often the case, such as the one we consider, that the experimenter, in this instance the
firm, does not fully control treatment assignment and therefore cannot randomize it. The
most common solution in these situations is to randomize eligibility to receive treatment
instead, which is the experimental design we address.6

Let Z be an indicator for whether the unit is eligible to receive treatment, which we assume
is randomly assigned. Following Heckman and Vytlacil (2005), let treatment be given by:

D = 1 {ν(Z) ≥ U} , (3)

where ν(·) governs the process of selection into treatment and which could potentially
depend on a vector of observable characteristics X, as could the distribution of treatment
effects.7 This functional form is either known or estimable from data generated from the
experiment by both the firm and the researcher. The error term U represents selection into
treatment that the firm and the researcher do not observe.

Following Mogstad et al. (2018), we maintain the following standard assumption.

Assumption 1.
(i) U ⊥⊥ Z, where ⊥⊥ denotes statistical independence.
(ii) E [Yd|Z, U] = E [Yd|U] and E

[
Y2

d
]
< ∞ for d ∈ {0, 1}.

(iii) U is continuously distributed.

Assumptions 1(i) and 1(ii) require Z to be exogenous with respect to the selection and out-
come processes, thereby characterizing it as a valid instrumental variable for the treatment
indicator, D. This is guaranteed in our setting because Z is randomly assigned. Given As-
sumption 1(i), Vytlacil (2002) showed that the assumption that the index of the selection
is additively separable as in equation (3) is equivalent to the monotonicity condition from
Imbens and Angrist (1994). Finally, Assumption 1(iii) is a weak regularity condition that
allows us to normalize U ∼ U(0, 1). Under these conditions, this model is equivalent to
that of Imbens and Angrist (1994). Assumption 1 allows us to define the propensity score

6If an experiment is infeasible, the firm could apply a model to observational data. However, lacking an
exogenous source of variation on treatment, it may be difficult to reliably estimate treatment effect param-
eters due to unobservable confounds that are correlated with both treatment and outcomes (Gordon et al.,
2019, 2022).

7For simplicity, we omit these observable characteristics from our model, but they can be added in a
straightforward manner. We demonstrate this in Appendix A.
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as

ν(Z) = Pr (D = 1|Z) . (4)

Figure 1 illustrates this experimental design. It can be seen as a single-cell design. Within
this cell, which we refer to as Cell 1, units are randomly assigned to Z = 1 or Z = 0,
corresponding to Figure 1a. Since ν(1) ∈ (0, 1), some, but not all units that are eligible to
receive treatment are actually treated (D = 1)—left column of Figure 1b—, and because
ν(0) = 0, none of the units that are ineligible to receive treatment are treated (D = 0)—
right column of Figure 1b.

Z = 1 Z = 0

(a) Cell 1: Setup

Z = 1

D = 1

D = 0

D = 0

Z = 0

(b) Cell 1: Treatment

Figure 1: Single-cell experiment with one-sided noncompliance

This setup corresponds to an experiment with one-sided noncompliance, a typical experi-
mental design in many online advertising settings. Under standard conditions, any exper-
imental design that features a binary treatment and a valid binary instrument can identify
a local average treatment effect (LATE) parameter. However, one-sided noncompliance
gives us the ability to estimate another important treatment effect parameter, the aver-
age treatment effect on the treated (ATT), defined as ATT ≡ E [Y1 −Y0|D = 1], because it
implies that ATT = LATE.

Much of the recent literature on advertising measurement stops once a focal treatment ef-
fect(s) has been recovered. However, work in this area has been less focused on connect-
ing those estimates to advertising decisions. This motivates our interest in the advertiser’s
decision problem, which we return to next.
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2.3 Revisiting the firm’s advertising problem

Using equations (1) and (3) and the normalization that U ∼ U(0, 1), we can rewrite the
firm’s optimization problem as:

max
ν∈[0,1]

(δ× {νE [Y1|U ≤ ν] + (1− ν)E [Y0|U ≥ ν]} − κ(ν)) . (5)

As we show in Appendix B, it follows that:

E [Y1|U ≤ ν] =
∫ ν

0
m1(u)

1
ν

du and E [Y0|U > ν] =
∫ 1

ν
m0(u)

1
1− ν

du, (6)

where we used that f (u) = 1 since U follows a standard uniform distribution. The func-
tions md(u), where d ∈ {0, 1}, are defined as E [Yd|= u]. These functions are known as the
marginal treatment response (MTR) functions.

As we also show in Appendix B, plugging the expressions in equation (6) back into equa-
tion (5) allows us to rewrite the firm’s decision problem as:

max
ν∈[0,1]

(
δ×

∫ ν

0
MTE(u)du− κ(ν)

)
, (7)

where we defined the marginal treatment effect (MTE) function as:

MTE ≡ E [Y1 −Y0|U = u] = m1(u)−m0(u). (8)

The MTE can be interpreted as the expected treatment effect at a particular (marginal)
realization of the unobservable U = u. One of the benefits of this function is that, as
shown, for example, in Heckman and Vytlacil (2005), it can be used to obtain most treat-
ment effect parameters of interest, such as the average treatment effect (ATE). We present
the mapping between the MTE function and some of these parameters in Appendix C.

For simplicity, assume that the MTE function is decreasing and that the cost function κ(·)
is convex and differentiable. Then, the optimal fraction of units to be treated, ν∗, is deter-
mined by the first-order condition:

δ×MTE(ν∗) = κ′(ν∗). (9)

The solution is for the monetary amount of the marginal treatment effect to be equal to the
marginal cost of treatment. In other words, the solution is to equalize expected marginal
revenue with marginal cost.

The solution to this optimization problem can be used to determine the firm’s optimal
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budget for advertising, which is then κ(ν∗). It can also accommodate an exogenous budget
by adding a constraint that κ(ν) must not exceed it. Importantly, notice that the object the
firm requires to solve their decision problem is the MTE function itself—this function is the
PRTE. In turn, the ATT, which we can recover from data collected from the experimental
design outlined earlier, is insufficient for the firm to make this decision because it lacks
information relevant to solve the first-order condition shown in equation (9). In addition,
notice that knowing the MTE function allows the firm to set the optimal budget for any
cost function κ(·). This can make the approach we suggest, that of recovering the MTE
function, preferable to one where the firm directly optimizes budget conditional on a cost
function, even when this is the sole object the firm cares about.

3 Empirical approach

Our goal is to recover credible estimates of the MTE function because it can be used to
obtain multiple treatment effect parameters, including the ATT, and because it is an input
to solve multiple decision problems, such as the one we presented above.

In this section, we first present our proposed multi-cell experimental design. Second, we
discuss how to connect the data generated from this design to the MTR functions, which
allow us to recover the MTE function. Third, we explain our approximation strategy,
which is motivated by and leverages the techniques in Brinch et al. (2017)—henceforth
“BMW”. As we show in Section 4.3, a direct application of BMW to a single-cell experi-
ment with one-sided noncompliance does not yield sufficient information to obtain cred-
ible estimates of the MTE function. Fourth, we show how to use the approximations to
solve a Bayesian version of the decision-maker’s advertising problem from Section 2.3.
Fifth, we discuss two important practical elements of implementing our proposed ex-
perimental design: allocating the budget across cells and the number of cells to use. This
includes discussion of the variation needed to recover the approximation to the MTE func-
tion and explains how our design provides this variation.

3.1 A multi-cell experimental design

In our multi-cell design, first units are randomly divided across C cells and then, given
assignment to cell c, are randomly split into test and control groups within each cell. We
define C = 1, . . . , c, . . . , C to indicate assignment to cell c and Zc as the indicator for treat-
ment eligibility of an experimental unit from cell c. All these within-cell experiments
feature one-sided noncompliance, so Pr (D = 1|Zc = 0) = 0 for all c.

9



We maintain the following assumption.

Assumption 2.
(i) Pr(Zc = z|C = c) ∈ (0, 1) for all c and all z.
(ii) ν(Zc = 1) ≡ Pr (D = 1|Zc = 1) ∈ (0, 1) for all c.
(iii) ν(Zc = 1) 6= ν(Zc′ = 1) for all c 6= c′.

Assumptions 2(i) and 2(ii) are innocuous. First, remember that the experimenter has full
control over the test/control split for each cell, and so can guarantee that Pr(Zc = z|C = c)
is always strictly between 0 and 1. Second, consider cases in which the probability of treat-
ment conditional on eligibility is either 0 or 1. If ν(Zc = 1) = 1, the endogeneity prob-
lem is resolved because eligibility to receive treatment becomes equivalent to exposure to
treatment itself. In turn, if ν(Zc = 1) = 0, this estimation exercise becomes meaningless
because it implies that it is impossible for units to receive the treatment under considera-
tion.

Assumption 2(iii) requires that the probability of treatment conditional on eligibility varies
across cells. The extent to which the experimenter is able to induce this variation is
context-specific.8 For instance, in online advertising, treatment is exposure to ads, which
is determined through auctions. Hence, the advertiser, as the experimenter, can influence
treatment compliance by changing the average budget per user. The higher it is, the more
likely the user is to be exposed to the ad. With a multi-cell experiment, this variation can
be obtained by simply allocating the budget across cells appropriately.

As we show in Section 3.3, Assumption 2 is crucial for BMW’s method to be imple-
mentable in the context of our multi-cell design. On the other hand, with a single-cell
experiment with one-sided noncompliance, the application of BMW’s method requires the
imposition of an additional constraint to alleviate an underidentification problem, which
we show in Section 4.3.

3.2 Data generated from multi-cell design

All the information obtained from the multi-cell design about the MTE function is cap-
tured by the following moments:

ψdzc ≡ E [Y|D = d, Zc = zc, C = c] , (10)

8In settings where treatment is solely an active choice by the experimental unit, this might be more
difficult to achieve. For example, when treatment is a job training program, the decision of whether to enroll
in the program is entirely the individual’s choice. The experimenter can vary incentives for the individual
to take the program, but the effectiveness of these incentives is unknown ex ante.
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where d ∈ {0, 1}, zc ∈ {0, 1} and c = 1, . . . , C. These moments are nonparametrically
identified in the data. To see how they provide information about the MTE function, we
rely on the definition of treatment in equation (3) and the expressions in equation (6) to
obtain:

ψ1zc = E [Y|D = 1, Zc = zc, C = c]

= E [Y1|U ≤ ν(zc), Zc = zc]

=
1

ν(zc)

∫ ν(zc)

0
m1(u)du (11)

and

ψ0zc = E [Y|D = 0, Zc = zc, C = c]

= E [Y0|U > ν(zc), Zc = zc]

=
1

1− ν(zc)

∫ 1

ν(zc)
m0(u)du. (12)

Hence, we have a known relationship between identified moments and the underlying
MTR functions, m0(u) and m1(u), which we can then leverage to obtain information about
the MTE function.

At first, it might seem like the multi-cell design generates 3C different moments because
d ∈ {0, 1}, zc ∈ {0, 1} and d = 1 only if zc = 1 would imply three moments per cell.
However, note that ν(Zc = 0) = 0 for all c = 1, . . . , C. From equation (12), this implies
that

ψ00c = E [Y|D = 0, Zc = 0, C = c]

= E [Y0|U > 0, Zc = 0]

=
∫ 1

0
m0(u)du (13)

≡ ψ00 for all c.

Hence, the multi-cell design generates 2C + 1 different moments. Next, we show that
these moments are sufficient to construct an approximation to the MTE function.

3.3 Approximation Method

BMW show that if an instrument Z takes C different values, each associated with a propen-
sity score that is strictly between 0 and 1, then we can approximate the MTR functions with
a polynomial of degree C− 1 provided that the propensity scores are also different from
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one another.9

We adapt this approach to our multi-cell experimental design. When d = 1, we observe
C different values for ψ1zc from equation (11). When d = 0, we observe C + 1 different
values for ψ0zc, with C values from equation (12) and one value from equation (13).

Given the variation in the observed moments and in the propensity score, we consider the
following polynomial approximations of the MTR functions:

m̃1(u; λ1) =
C−1

∑
c=0

λ1cuc and m̃0(u; λ0) =
C

∑
c=0

λ0cuc, (14)

where it should be noted that the approximation when d = 0 is of one higher degree
compared to d = 1. Plugging (14) back into the right-hand side of equations (11) and (12),
we obtain the following approximations to the moments:

ψ̃1zc ≡
1

ν(zc)

∫ ν(zc)

0

C−1

∑
c′=0

λ1c′uc′du

=
C−1

∑
c′=0

λ1c′
1

ν(zc)

∫ ν(zc)

0
uc′du

=
C−1

∑
c′=0

λ1c′

(
ν(zc)c′

c′ + 1

)
(15)

and

ψ̃0zc ≡
1

1− ν(zc)

∫ 1

ν(zc)

C

∑
c′=0

λ0c′uc′du

=
C

∑
c′=0

λ0c′
1

1− ν(zc)

∫ 1

ν(zc)
uc′du

=
C

∑
c′=0

λ0c′

(
∑c′

s=0 ν(zc)s

c′ + 1

)
(16)

9Alternatively, if the MTR functions are polynomials of degree C− 1 or less, then they are point identi-
fied, and, consequently, so is the MTE function.
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for all c ∈ C. We can stack these terms and represent (15) and (16) in matrix form:


ψ̃111

ψ̃112
...

ψ̃11C


︸ ︷︷ ︸

ψ̃1

=


1 ν(z1)

2 . . . ν(z1)
C−1

C

1 ν(z2)
2 . . . ν(z2)

C−1

C
...

... . . . ...

1 ν(zC)
2 . . . ν(zC)

C−1

C


︸ ︷︷ ︸

ν1


λ10

λ11
...

λ1,C−1


︸ ︷︷ ︸

λ1

(17)

and 
ψ̃00

ψ̃011

ψ̃012
...

ψ̃01C


︸ ︷︷ ︸

ψ̃0

=



1 1
2 . . . 1

C+1

1 1+ν(z1)
2 . . . 1+ν(z1)+···+ν(z1)

C

C+1

1 1+ν(z2)
2 . . . 1+ν(z2)+···+ν(z2)

C

C+1
...

... . . . ...

1 1+ν(zC)
2 . . . 1+ν(zC)+···+ν(zC)

C

C+1


︸ ︷︷ ︸

ν0


λ00

λ01
...

λ0,C


︸ ︷︷ ︸

λ0

. (18)

Provided that the matrices ν1 and ν0 from equations (17) and (18) are invertible, we can
compute λ1 and λ0 by replacing ψ̃1 and ψ̃0 with their observed counterparts from equation
(10): λ1 = ν−1

1 ψ̃1 and λ0 = ν−1
0 ψ̃0. The invertibility of ν1 and ν0 is ensured by Assumption

2. Having recovered the λs that parameterize the approximation to the MTR functions,
we can obtain an approximation to the MTE function by equation (8) and compute ap-
proximations to other treatment effect parameters of interest.

3.4 Utilization for decision-making: a Bayesian approach

The approximation method described above allows us to estimate the parameters λ1 and
λ0 from data. These estimates can then be used for decision-making, for instance, through
the optimization problem given in Section 2.3.

To see this more clearly, we plug (14) back into (7), which yields the following approxi-
mated version of the firm’s optimization problem:

max
ν∈[0,1]

(
δ×

[
C−1

∑
c=0

λ1c
νc+1

c + 1
−

C

∑
c=0

λ0c
νc+1

c + 1

]
− κ(ν)

)
, (19)

A naive approach would be to plug estimates of λ1 and λ0, say, λ̂1 and λ̂0 into (19) and
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solve for the optimal ν∗. It is simple to obtain these estimates: it suffices to replace the
ψ = {ψ1, ψ0}s and ν = {ν1, ν0} in (17) and (18) with their estimates and compute the
implied λs. Notice that this is straightforward because, from expressions (4) and (10), we
can estimate the ψs and νs through simple sample averages.

However, this plug-in approach ignores the uncertainty around the estimates λ̂1 and λ̂0,
which should be accounted for when solving a statistical decision theory problem. Even
though there are many different criteria to solve such problems, we adopt a Bayesian
approach due to its convenience. This approach integrates the objective function with
respect to the unknown parameters—in this case, λ1 and λ0—using their posterior distri-
bution given the data.

To be precise, denote this distribution by p (λ1, λ0|data). By adopting a Bayesian approach
we solve the following problem:

max
ν∈[0,1]

(
δ×

∫
λ1,λ0

[
C−1

∑
c=0

λ1c
νc+1

c + 1
−

C

∑
c=0

λ0c
νc+1

c + 1

]
p (λ1, λ0|data) dλ1dλ0 − κ(ν)

)
=

max
ν∈[0,1]

(
δ×

[
C−1

∑
c=0

E [λ1c|data]
νc+1

c + 1
−

C

∑
c=0

E [λ0c|data]
νc+1

c + 1

]
− κ(ν)

)
. (20)

Hence, this new objective function depends solely on the posterior expected λs given the
data, which is a consequence of our approximation being linear in these parameters.

Directly obtaining p (λ1, λ0|data), and thus E [λ1|data] and E [λ0|data], is challenging.
Nevertheless, it is straightforward to: derive the posterior distribution of ψ and ν given
the data; take draws from this distribution; apply (17) and (18) using these draws to obtain
draws from p (λ1, λ0|data); use these new draws to compute E [λ1|data] and E [λ0|data];
and then solve the decision problem in (20).

We now describe how to obtain draws from p (λ1, λ0|data). To this end, we need to
set priors over ψ and ν, denoted by q(ψ, ν), and the likelihood function of the data,
` (Y, D|C, Z; ψ, ν). We condition on Z and C because they are randomly chosen.

We need to consider two cases. First, notice that because D = 0 when Zc = 0 for all
c, we can pool all observations such that Zc = 0 from all cells and use them to obtain
the posterior distribution of ψ00, as given in equation (13), conditional on the data. More
precisely, given a prior distribution q(ψ00) and the likelihood `(Y|Z = 0; ψ00), we can
derive the posterior p(ψ00|Y, Z = 0). The form of this distribution clearly depends on
what type of variable Y is. In our application below, Y is binary. Hence, for convenience
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we set:

Y|Z = 0; ψ00 ∼ Bernoulli (ψ00)

ψ00 ∼ Beta(α0, β0)
(21)

which implies that

ψ00|Y, Z = 0 ∼ Beta

(
α0 + ∑

i:Zic=0
Yi, n0 − ∑

i:Zic=0
Yi + β0

)
, (22)

where n0 is the total number of ineligible users.

The second case conditions on C = c and Zc = 1. Denote the number of observations in
this set by nc. For convenience, we proceed in two steps, relying on the factorization:

` (Y, D|C = c, Zc = 1; ψ11c, ψ01c, ν(zc)) = ` (Y|D, C = c, Zc = 1; ψd1c)

× ` (D|C = c, Zc = 1; ν(zc))
(23)

First, recall that D is binary, so we proceed as above:

D|Zc = 1, C = c; ν(zc) ∼ Bernoulli (ν(zc))

ν(zc) ∼ Beta(αDc, βDc)

ν(zc)|D, Zc = 1, C = c ∼ Beta

(
αDc + ∑

i:Zic=1,Ci=c
Di, nc − ∑

i:Zic=1,Ci=c
Di + βDc

)
.

(24)

The second step consists of obtaining the posterior distribution of ψd1c, as given in equa-
tions (11) and (12), conditional on the data. Once again, the form of this distribution
clearly depends on what type of variable Y is. Given our application, we proceed as in
(21) and (22). Denote the number of observations such that D = d, Zc = 1 and C = c by
nd1c. Then:

Y|D = d, Zc = 1, C = c; ψd1c ∼ Bernoulli (ψd1c)

ψd1c ∼ Beta(αd1c, βd1c)

ψd1c|Y, D = d, Zc = 1, C = c ∼ Beta

(
αd1c + ∑

i:Di=d,Zic=1,Ci=c
Yi, nd1c − ∑

i:Di=d,Zic=1,Ci=c
Yi + βd1c

)
.

(25)
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3.5 Implementing the multi-cell experiment

The campaign budget is a critical lever for the advertiser because it impacts reach among
the target audience. First, we describe how a budget designated to a single-cell experi-
ment can be redistributed to a multi-cell experiment conditional on C and on the asso-
ciated ν(Zc = 1). Second, the experimenter’s choice of the number of cells overall, C,
directly relates to the budget designated for the experiment itself. Together, the budget
and number of cells impact the realized propensity scores, ν(Zc = 1). We discuss how the
experimenter can choose C and attempt to influence ν(Zc = 1) to generate the necessary
variation for our approximation method.

It is possible that more precise prescriptions for some of these quantities could be achieved
with certain assumptions on the underlying DGP. In Appendix D, we consider assump-
tions that are commonly made in the literature (e.g., monotone treatment response) and
verify whether these lead to restrictions on the DGP such that the implied MTE function
is necessarily “well-behaved.” Through a series of examples we demonstrate that this is
not the case.

3.5.1 Budget allocation for the experiment

From a practical perspective, it is straightforward to reallocate the budget designated to a
single-cell experiment across several cells with different propensity scores.

To see this, first assume that all users are targeted (there is no experiment). Denote the
advertising budget by B. Let the target audience consist of a continuum of users, which
we normalize to one. This implies that the effective advertising budget, that is, the budget
per user, is also B. Finally, suppose that the cost function κ(·) is strictly increasing. Then,
the resulting fraction of treated users, ν̌, is ν̌ = κ−1(B).

Now assume that the experiment with one-sided noncompliance is conducted and fix
Pr(Z1 = 1). The effective budget then becomes B1 = B

Pr(Z1=1) , so that ν(Z1 = 1) =

κ−1
(

B
Pr(Z1=1)

)
. Notice that ν(Z1 = 1) = ν̌ can be achieved by setting the advertising

budget allocated to this experiment to be B̌1 = Pr(Z1 = 1) × B, so that the effective
budget becomes B.

Consider now a two-cell experiment, and fix Pr(C = 1) and Pr(Z1 = 1|C = 1). Let
σ1 be the fraction of the original budget, B, allocated to Cell 1, so that B1 = σ1 × B.
The effective budget for Cell 1 is then B1

Pr(Z1=1|C=1)×Pr(C=1) = σ1
Pr(Z1=1|C=1)×Pr(C=1) × B,

so that ν(Z1 = 1) = κ−1
(

σ1
Pr(Z1=1|C=1)×Pr(C=1) × B

)
. Equivalently, we then obtain B2 =
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(1 − σ1) × B, so that the effective budget for Cell 2 becomes B2
Pr(Z2=1|C=2)×(1−Pr(C=1)) =

1−σ1
Pr(Z2=1|C=2)×(1−Pr(C=1)) × B and ν(Z2 = 1) = κ−1

(
1−σ1

Pr(Z2=1|C=2)×(1−Pr(C=1)) × B
)

.

Hence, when running a two-cell design, given B and κ(·), the experimenter has four de-
cision variables: Pr(C = 1), σ1, Pr(Z1 = 1|C = 1) and Pr(Z2 = 1|C = 2). For the desired
variation in the propensity score to be generated, it is necessary that σ1

Pr(Z1=1|C=1)×Pr(C=1) 6=
1−σ1

Pr(Z2=1|C=2)×(1−Pr(C=1)) . Thus, the experimenter can always guarantee that this constraint
is satisfied.

This framework can be generalized to C cells in a straightforward manner. In this case,
the experimenter has 3C − 2 variables: {σc, Pr(C = c)}C−1

c=1 and {Pr(Zc = 1|C = c)}C
c=1,

under the constraints that, for all c = 1, · · · , C, σc ∈ [0, 1], Pr(Zc = 1|C = c) ∈ [0, 1]
and Pr(C = c) ∈ [0, 1], plus ∑C

c=1 σc = 1 and ∑C
c=1 Pr(C = c) = 1. To ensure that the

propensity scores differ from one another, it is then required that σc
Pr(Zc=1|C=c)×Pr(C=c) 6=

σc′
Pr(Zc′=1|C=c′)×Pr(C=c′) for all c 6= c′.

3.5.2 On the number of cells and propensity score values

We now discuss the choice of C and ν(Zc = 1) assuming that the budget for the experi-
ment is not a concern.

Because a larger value for C translates into an approximating polynomial to the MTE
function of higher order, it might be expected that more cells should yield a more credible
approximation to the MTE function and, consequently, to the optimal decision the experi-
menter wishes to make. Nevertheless, as we show in Section 4.5, this need not be the case
depending on the shape of the MTE function and on the values taken by the propensity
score across cells.

Unfortunately, without strong assumptions, it is not possible to obtain sufficiently “well-
behaved” MTE functions that allow for precise recommendations regarding what values
the propensity score should take conditional on the number of cells. We found that com-
monly made assumptions in the literature such as positive correlations between the po-
tential outcomes and the unobserved term that drives selection, monotonicity of the MTE
function, or monotone treatment response (Manski, 2004), do not sufficiently discipline
the MTE functions so as to enable precise guidance.

A sufficiently large budget and clear choices for the number of cells and propensity score
values can enable the researcher to satisfactorily address identification of the MTE func-
tion, but in practice estimation can also be a concern to be addressed. With a finite number
of observations, the number of cells in the experiment creates a type of bias-variance trade-
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off. On the one hand, a higher number of cells generates more values of the propensity
score, theoretically enabling a more flexible approximation of the MTE function, and thus
decreasing bias. On the other hand, the number of observations per cell decreases, yield-
ing noisier estimates of the approximating function, and thus increasing variance. Hence,
the number of cells can be seen as somewhat akin to a bandwidth in nonparametric es-
timation. Once again, without strong assumptions on the underlying MTE function it is
not possible to establish how to make progress on the task of choosing the number of cells
vis-à-vis the available sample size.

4 Empirical application

We illustrate the value of our proposed multi-cell experimental design through a series
of simulations calibrated to online advertising experiments at Facebook. We follow this
simulation approach because we do not have data from a multi-cell experiment. Specif-
ically, we use the results from a single-cell experiment with one-sided noncompliance to
calibrate a set of data generating processes (DGPs). We then use these DGPs to simulate
what our proposed multi-cell design would have produced had it been used instead of
the typical single-cell design. The results confirm that our design enables the practitioner
to approximate the underlying MTE function well.

We follow this analysis with results from a direct application of BMW’s method. As we
discussed above, the direct application of this method to data collected from a single-
cell experiment with one-sided noncompliance requires the imposition of an additional
restriction, for which there is little guidance. We demonstrate how sensitive the estimates
can be to different possible restrictions. Using our simulated DGPs, we compare these
estimates to the ones obtained from our approach and find that ours approximate the
underlying MTE function better than all alternatives.

Then, we use the different approximations of the MTE function to derive the implied so-
lutions to the optimization problem from equation (7), which was our original motivation
behind this exercise instead of estimation of the MTE function. Once again, we find that
our approach yields the solution that best approaches the true optimal solution, and, con-
sequently, yields the lowest loss in expected profits.

Finally, we consider an example of a complex MTE function to illustrate how the perfor-
mance of our method is impacted by the number of cells.
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4.1 Data and Simulation Approach

Our simulation exercise is based on data from 15 large-scale online advertising exper-
iments (or “studies”) at Facebook used in Gordon et al. (2019), to which we direct the
reader for more details on the experiments and underlying data. We display the key quan-
tities in Table 1.

The number of observations per experiment ranges from 1,955,375 (Study 10) to 141,254,650
(Study 6). The fraction of units randomly assigned to be eligible to receive treatment,
Pr(Zc = 1), ranges from 0.17 (Study 7) to 0.85 (Study 2). There is substantial variation
across studies in exposure rates conditional on eligibility, ranging from 0.066 (Study 9)
to 0.81 (Study 15). This is relevant because the experimenter does not fully control this
quantity.

Each study in Table 1 represents a single-cell experiment with one-sided noncompliance.
As such, we observe the ATT and the expectations ψ11, ψ01 and ψ00, which correspond
to the three regions in Figure 1b. These objects contain all the relevant information to
estimate the MTE function.

In what follows, we focus solely on Study 4.10 We use the data from this experiment to
generate additional ψs, as defined in equation (10), that would have been generated with
a multi-cell version of the experiment. We explain this calibration in detail below.

We proceed as follows. First, we specify functional forms for the MTR functions and
choose their associated parameters to match the ψs we observe in the data. This allows
us to generate the MTE function. Second, we consider the simplest version of our pro-
posed design with only two cells, and choose the cell-specific eligibility probabilities and
propensity scores. We also choose these values based on the quantities we observe in the
data. Finally, using the MTE function and these probabilities we generate the additional
ψs that would have been observed had this design been implemented through equations
(11) and (12).

We start by specifying true MTR functions of the form:

m1(u) = m10 + m11u + m12u2

m0(u) = m00 + m01u + m02u2 + m03u3.

We chose these functional forms because they are the polynomials of lowest order that the
simplest version of our design—with only two cells—cannot recover. With three or more
cells, our approach can perfectly recover the true MTR functions. These forms imply that
the MTE is a cubic polynomial.

10Future versions of this paper will include results based on simulations from the other experiments.
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For this exercise, we need to choose parameter values such that the implied moments
match the observed ψ11, ψ01 and ψ00. Under these functional forms, this implies that we
need to choose seven parameters to satisfy only three constraints subject to the additional
constraint that the MTR functions have to be between 0 and 1, because the outcome of
Study 4 is binary (checkout). We consider two sets of parameters to illustrate our proposed
approach.

The resulting MTE functions are shown in Figure 2. Both DGPs correspond to functions
that are very close to quadratic, so we expect that a two-cell design will suffice to obtain
good approximations.
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DGP 1: MTE = − 0.0036 + 0.0254u − 0.0179u2 + 0.0027u3

DGP 2: MTE = − 0.0034 + 0.0268u − − 0.0288u2 + 0.003u3

Figure 2: Simulated DGPs from Study 4

We use the MTE functions above to simulate data from our proposed experimental design
with C = 2 cells. Notice that this design limits us to a linear approximation to m1(·) and a
quadratic approximation to m0(·).

The first step it to set the propensity scores. Because Study 4 assigned users to be eligible
to receive treatment with probability 0.7, we consider this to be one cell and add a second
cell in which this probability equals 0.3. For the first cell we keep the propensity score at
the original value, ν(Z1 = 1) = 0.37, and set the propensity score for the second cell so
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that Pr(Z1 = 1|C = 1) × ν(Z1 = 1) = Pr(Z2 = 1|C = 2) × ν(Z2 = 1), implying that
ν(Z2 = 1) ≈ 0.86.

We use these propensity scores and the underlying MTE functions to compute the ψs from
equations (11) and (12) that would have been observed had our design been implemented.

4.2 Results from our proposed approach

We use the ψs from above to obtain the approximated MTE functions following the proce-
dure we described in Section 3.3. The resulting approximations to the DGPs we consider
are shown in Figure 3.
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(a) DGP 1: MTE(u) = −0.44 + 2.89u− 2.22u2 + 0.27u3
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(b) DGP 2: MTE(u) = −0.41 + 3.04u− 3.32u2 + 0.3u3

Figure 3: Approximations to simulated DGPs from Study 4
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Although the underlying MTE functions are cubic, the fact that their shapes are close
to quadratic implies that a two-cell design yields good approximations. We quantify
the quality of these approximations through three metrics. Denote the approximation
to the true MTE function by MTEapp(·). The metrics we consider are the sup-norm,

maxu∈[0,1]
∣∣MTE(u)−MTEapp(u)

∣∣, and the L2-norm,
√(∫ 1

0

[
MTE(u)−MTEapp(u)

]2 du
)

.

In addition, we consider the quality of the approximated ATE, ATEapp, relative to the true

value, which we refer to as “ATE-norm:” ATEapp−ATE
ATE . We consider this metric as a dif-

ferent way of summarizing the discrepancy between the true and approximated MTE
functions because often the ATE is the treatment effect parameter of original interest to
the researcher.

The results are given in Table 2. Overall, our method generates a small difference between
the approximations and their true values. These results will be more interpretable when
made in comparison to others in the following sections.

Table 2: Distance between true and approximated MTE functions: two-cell design

Metric DGP 1 DGP 2

sup-norm 0.00019 0.00015

L2-norm 0.00036 0.00014

ATE-norm -0.03009 0.02432

4.3 Direct application of BMW’s method with only one cell

BMW’s method can be applied to data obtained from the typical experimental design.
However, because this design yields one-sided noncompliance, ν(0) = 0 while ν(1) ∈
(0, 1). Thus, equations (15) and (16) imply that the only moments identified from the
data it provides are ψ11, ψ01 and ψ00, where we omit the subscript c to ease notation since
there is only one cell. Based on the logic from equations (17) and (18), these moments
allow us to approximate m1(·) with a constant function and m0(·) with a linear function.
Consequently the MTE function itself can be approximated with a linear function.

The ability to approximate the MTE function with a linear function might seem attractive,
especially because it is not uncommon to maintain the assumption that the MTE function
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is indeed linear.11 Nevertheless, the missingness of ψ10 implies that this approximation
inherently features a restriction that nontrivially impacts not only the quality of the ap-
proximation, but also the structure of the endogeneity of treatment.

To see this, suppose for simplicity that md(u) = λd0 + λd1u for d ∈ {0, 1}. It follows that:

E [Y|D = 1, Z = z] = λ10 +
λ11

2
ν(z)

E [Y|D = 0, Z = z] =
(

λ00 +
λ01

2

)
+

λ01

2
ν(z).

The data obtained from the typical experimental design thus enable us to recover λ00 and
λ01. Nevertheless, they do not allow us to recover λ10 and λ11 separately because we
do not observe ψ10. This is an underidentification problem: there are four parameters to
be estimated (λ10, λ11, λ00 and λ01) but only three moments available to estimate such
parameters (ψ11, ψ01 and ψ00).

By approximating m1(·) with a constant, the practitioner effectively imposes that λ11 = 0,
enabling them to estimate λ10. From a purely mechanical perspective, the higher |λ11| is,
the lower the quality of the approximation. However, the constraint λ11 = 0 also has a
deeper structural implication. It implies that all endogeneity stems from Y0. This rules
out certain forms of self-selection, such as the classic case of D = 1 {Y1 ≥ Y0}, where only
units that benefit from treatment are treated. In our setting of online advertising, this
precludes “perfect” ad exposure where units are exposed to the ad only if this benefits the
advertiser.

Even though it is arguably more natural to set λ11 = 0 in accordance with the approxi-
mation method from Section 3.3, there are other constraints the practitioner might want
to impose instead that are justifiable. A stronger restriction is to set λ11 = λ01, thereby
ruling out endogeneity altogether but also allowing us to recover λ10. However, this is
often considered implausible, including in the context of online advertising.

Alternatively, the practitioner can impose λ10 = 0, allowing them to recover λ11. Given
linearity, this restriction implies that m1(·) is either always negative or always positive,
which can be justified in cases where Y1 is bounded either from above or below at 0.
The same can be achieved for the MTE function by imposing that λ10 = λ00, while also
enabling the estimation of λ11.

Unfortunately, we are unaware of any general theory or methodology that can provide
clear guidance on which assumption above is most reasonable, although progress has

11Examples of studies that maintained this linearity assumption are Olsen (1980), Moffitt (2008), French
and Song (2014), Brinch et al. (2017) and Kowalski (2021).
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been recently made in this direction (e.g., Kowalski, 2023). Whichever restriction is cho-
sen, a key point is that such additional constraint must always be imposed to implement
BMW’s estimator using data collected from an experiment with one-sided noncompliance,
which, to our knowledge, has not been noted in the literature. Given the pervasiveness of
such experimental designs, we hope our approach provides a valuable solution to recover
the MTE function more credibly.

Below we present results from the direct application of BMW’s method under the four
aforementioned constraints to both of the DGPs. It is important to note that these four
approximations will be the same for both DGPs because each was generated using the
same values for {ψ11, ψ01, ψ00}. Our multi-cell approach yields specific approximations
to each DGP because it relies on different moments that depend on the underlying DGP.
Figure 4 depicts the four approximated MTE functions.
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Figure 4: Approximations of MTE function from direct application of BMW’s method

There is noticeable variation across the approximate MTE functions. The slopes range
from 0 (λ11 = λ01) to 0.0047 (λ10 = 0), which, as we show below, impacts decision-making
considerably. Notice that setting λ11 = λ01 imposes that the slope equals 0 because it
implies that the MTE function does not depend on u, which is equivalent to ruling out
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endogeneity in treatment assignment.

A different way of illustrating this variation is through the distance between the approx-
imated MTE function and the true MTE, which are shown in Table 3. Once again, we
highlight the restrictions that yield the best approximations for each DGP-metric pair.

Table 3: Distance between true and approximated MTE functions: one-cell design with
additional restriction

Restriction
DGP 1 DGP 2 DGP 1 DGP 2 DGP 1 DGP 2

sup-norm L2-norm ATE-norm

λ11 = 0 0.0061 0.0027 0.0045 0.002 -0.8794 -0.6103

λ11 = λ01 0.0064 0.0029 0.0046 0.002 -0.9151 -0.7257

λ10 = 0 0.0036 0.0016 0.0027 0.0022 -0.5269 0.5294

λ10 = λ00 0.0053 0.0024 0.0039 0.0019 -0.7707 -0.2586

The results from Tables 2 and 3 demonstrate that the two-cell design always gives a better
approximation to the MTE function regardless of the DGP and of the metric used. This is
unsurprising, especially in light of Figures 3 and 4.

Two results are particularly notable. First, no parameter restriction yields an approxima-
tion that always dominates the others. Second, depending on the metric used to measure
the quality of the approximation, the best restriction can change. This can be seen for DGP
2: under the sup-norm, the restriction λ10 = 0 yields the best approximation, while under
the L2-norm, λ10 = λ00.

Nevertheless, even though the direct applications of BMW provide relatively poor ap-
proximations of the MTE function, this does not necessarily imply that they are not help-
ful in informing decision-making. For the purposes of the latter, these approximations
can work well if they imply an approximated expected profit function whose maximum
is close to that of the true expected profit function. We investigate this matter below.
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4.4 Implications for decision-making

The goal of experimentation often is to recover the PRTE given by a specific decision
problem, which frequently does not correspond to typical treatment effect parameters
such as the ATE or the ATT. Although the approaches in the previous subsection yield
poor approximations of the MTE function, it is possible that they perform well when it
comes to the implied optimal decisions.

We consider the firm’s decision problem given in equation (7). For the sake of illustra-
tion, we set δ = 1 and κ(ν) = 0.1ν4. A firm can set δ based on their internal assessment
of the value of a conversion event. We specify κ(ν) as convex to capture the notion that
reaching the marginal consumer becomes more expensive as overall campaign reach in-
creases. Most advertising platforms provide tools to advertisers to help them predict how
reach is expected to vary as a function of their budget.12 Based on the simulated DGPs we
outlined above, the resulting expected profit functions are given in Figure 5.

The expected profit functions reflect the differences across the different DGPs shown in
Figure 2. They demonstrate how different MTE functions can affect optimal decisions. In
this case, the optimal decisions associated with DGPs 1 and 2 are to treat 100% and 75.5%
of the population, respectively.

12For example, advertiser tools to estimate campaign audience size are offered by Google
(https://support.google.com/google-ads/answer/2475441?hl=en) and Meta (https://www.
facebookblueprint.com/student/activity/212722).
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Figure 5: Expected profit functions from simulated DGPs of Study 4

We now compare the true optimal solutions to what the decision-maker would do if in-
formation obtained from our experimental design was available, following the procedure
we presented in Section 3.4. As a comparison, we also consider results from using the
four different results obtained from applying BMW’s method directly under the different
additional restrictions outlined above. Table 4 shows the expected profit losses from using
these different approaches for each of the three DGPs.

Table 4: Decisions from approximated expected profit functions

DGP True ν∗
λ11 = 0 λ11 = λ01 λ10 = 0 λ10 = λ00 Multi-cell

ν∗ Loss ν∗ Loss ν∗ Loss ν∗ Loss ν∗ Loss

1 1 0.484 0.723 0.432 0.792 1 0 0.661 0.454 1 0

2 0.755 0.484 0.391 0.432 0.509 1 0.58 0.661 0.061 0.762 0.0003

The multi-cell approach yields virtually no losses across all DGPs and thus dominates the
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four direct applications of BMW. The magnitude of the expected profit losses is associ-
ated with the quality of the approximation to the underlying MTE function, reflecting the
patterns observed in Figure 3.

In turn, the direct applications of BMW do not show a systematic pattern. This is perhaps
to be expected: Figure 5 shows that the optimal solutions differ substantially across the
different DGPs. However, direct applications of BMW’s method yield the same solution
for each possible additional constraint across all DGPs. Consequently, when one solution
performs well under a given DGP, it will probably perform poorly under a different DGP.

The additional restriction that yields the lowest losses for DGPs 1, 2 and 3 are λ10 =

0, λ10 = λ00 and λ11 = λ01 (which interestingly rules out endogeneity of treatment),
respectively. These results agreement with those from Table 3.

Notice that setting λ10 = 0 eliminates expected profit losses under DGP 1 and setting
λ10 = λ00 yields low losses under DGP 2. The contrast between these findings and those
from Table 3 show that approximating the MTE function and minimizing expected profit
losses are connected, but not fully aligned, tasks.

4.5 A more complex DGP

So far we have focused on cubic MTE functions. Given that this is a simple functional
form, it might be considered unsurprising that our approach can perform satisfactorily.
We now consider a more complex MTE function to dig deeper into the ability of our pro-
posed multi-cell experimental design to provide a good approximation of this function
and to inform decision-making. In particular, we assess how the performance of our ap-
proach changes as the number of cells increases.

4.5.1 New MTE and expected profit functions

We choose m1(u) = k 1
1+u and m0(u) = ג 1

(1+u)2 + i sin2(2πu). As before, the parameters
k, and i and ג are computed to match the observed ψ11, ψ01 and ψ00. Figure 6 depicts the
resulting MTE function, and we refer to this as DGP 4. We consider this function to be
“complex” because is not monotonic, concave or convex over the entire domain.
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Figure 7 shows the implied expected profit function. Under DGP 4, the optimal decision
is to treat 91.54% of the population.
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Figure 7: Expected profit function under complex MTE

4.5.2 Approximations based on different numbers of cells

We now study how the quality of approximation changes as more cells are included into
the experiment. In particular, in addition to the two-cell design, we consider a three-cell
design and a five-cell design, which allow us to obtain a cubic and a quintic approximation
to the MTE function, respectively. Cells 1 and 2 display the same eligibility probabilities
and propensity scores as above. Cell 3 has Pr(Z3 = 1|C = 3) = 0.5 and ν(Z3 = 1),
chosen so that Pr(Z1 = 1|C = 1) × ν(Z1 = 1) = Pr(Z3 = 1|C = 3) × ν(Z3 = 1). We
set Pr(Z4 = 1|C = 4) = 0.25 and Pr(Z5 = 1||C = 5) = 0.9, and set ν(Z5 = 1) so that
Pr(Z1 = 1|C = 1)× ν(Z1 = 1) = Pr(Z5 = 1|C = 5)× ν(Z5 = 1), obtaining ν(Z5 = 1) ≈
0.288. Finally, we pick ν(Z4 = 1) = 0.17 to increase the range of values covered by the
propensity scores. Figure 8 shows the four approximated MTE functions along with the
true one.

31



0.0 0.2 0.4 0.6 0.8 1.0

1e
−

04
2e

−
04

3e
−

04
4e

−
04

5e
−

04
6e

−
04

7e
−

04

u

M
T

E
s

True MTE
2−cell
3−cell
5−cell
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Seemingly as the number of cells increases, so does the quality of the approximation. Nev-
ertheless, we note that at the extreme points of the domain these approximations might
worsen because of the extrapolation imposed by the polynomial functional form. To quan-
tify and assess its impact we compute the distance between the true and approximated
MTE functions using the aforementioned sup-norm and L2-norm. These quantities are
shown in Table 5, along with the optimal decisions implied by these approximations and
the losses in expected profit they imply.
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Table 5: Closeness to MTE function and ν∗ as a function of the number of cells

Method sup-norm L2-norm ATE-norm ν∗ Loss

Two-cell 0.00009 0.00005 -0.02445 0.8753 0.00049

Three-cell 0.00027 0.00008 0.00585 0.8824 0.00034

Five-cell 0.00035 0.00006 0.00144 1 0.00437

True — — — 0.9154 —

The different criteria demonstrate that, in this example, no single approximation strictly
dominates the others. Interestingly, according to the criteria that measure discrepancy
between the entire MTE function and its approximation, the simplest approximation, with
only two cells, performs best. In turn, the five-cell approximation is the one whose implied
ATE is closest to the true ATE. Nevertheless, the three-cell approximation is the one that
implies the smallest loss in expected profit.

These results further highlight that, even though they are connected, the tasks of approx-
imating the MTE function and approximating the maximum of the expected profit func-
tion are not perfectly aligned. The extent to which these approximations are misaligned
depends on the underlying MTE and cost functions.

5 Conclusion

Experiments are considered an especially attractive tool to estimate the impacts of treat-
ments and interventions. When treatment assignment cannot be randomized, a common
approach is to randomize eligibility to receive treatment instead, leading to one-sided
noncompliance. Nevertheless, decision-makers who conduct experiments are often in-
terested in obtaining information to assist them in making specific decisions, and not
just measuring the effects of treatment per se. Unfortunately, typical experimental de-
signs, such as the one where eligibility to receive treatment is randomized, do not provide
enough information to assist with many decisions.

This paper proposed an approach to obtain such information. This approach combines a
novel multi-cell experimental design and modern estimation techniques, where the for-

33



mer leads to the collection of data that contain more information about treatment effects
and the latter leverages this information. Our approach leverages the method from Brinch
et al. (2017), which we point out requires an arbitrary additional assumption to be applied
to experiments with one-sided noncompliance.

Using data from online advertising experiments at Facebook, we addressed the perfor-
mance of our proposed multi-cell experimental design vis-á-vis that of the typical exper-
imental design. To do so, we conducted simulation exercises where we implemented the
aforementioned estimators on data collected from experiments that followed each of these
two designs. We found that the estimates obtained from both estimators under our design
dominate those from the typical design, which, in turn, led to more accurate decision-
making. This not only shows how our experimental design works in conjunction with
modern estimation techniques, but also that it does lead to better estimates and decisions.
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A Incorporating observable characteristics

We now demonstrate how to incorporate observable characteristics, captured in a vector
X, into the model above. Three changes have to be made. First, equation (3) is replaced
with:

D = 1 {ν(Z, X) ≥ U} . (A.1)

Importantly, notice that the error in the selection, U, remains additively separable.

Second, Assumption 1 is replaced with:

Assumption A.1.
(i) U ⊥⊥ Z|X, where ⊥⊥ denotes conditional statistical independence.
(ii) E [Yd|Z, X, U] = E [Yd|X, U] and E

[
Y2

d
]
< ∞ for d ∈ {0, 1}.

(iii) U is continuously distributed conditional on X.

Finally, we replace Assumption 2 with:

Assumption A.2.
(i) Pr(Zc = z|X, C = c) ∈ (0, 1) for all X, c and all z.
(ii) ν(Zc = 1|X) ≡ Pr (D = 1|X, Zc = 1) ∈ (0, 1) for all c and X.
(iii) ν(Zc = 1|X) 6= ν(Zc′ = 1|X) for all c 6= c′ and X.

In summary, Assumptions A.1 and A.2 simply add conditioning on X to Assumptions
1 and 2. The equivalence between this model and that of Imbens and Angrist (1994) re-
mains. Furthermore, the MTR and MTE functions become md(u, x) ≡ E [Yd|U = u, X = x],
where d ∈ {0, 1}, and MTE(u, x) ≡ E [Y1 −Y0|U = u, X = x] = m1(u, x)− m0(u, x) , re-
spectively.

B Rewriting firm’s decision problem

We now demonstrate how the firm’s decision problem given in equation (2) can be rewrit-
ten as in equation (7). We begin by deriving the terms in equation (6). First, we have
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that:

E [Y1|U ≤ ν] =
∫ ν

0

∫
y1∈Y1

y1
f (y1, u)

Pr(U ≤ ν)
dudy1

=
∫ ν

0

(∫
y1∈Y1

y1 f (y1|u)dy1

)
f (u)

ν
du

=
∫ ν

0
E [Y1|U = u]× 1

ν
du

≡
∫ ν

0
m1(u)

1
ν

du, (B.1)

where in the third equality we used that U ∼ U(0, 1) and defined m1(u) ≡ E [Y1|U = u].
Second,

E [Y0|U > ν] =
∫ 1

ν

∫
y0∈Y0

y0
f (y0, u)

Pr(U > ν)
dudy0

=
∫ 1

ν

(∫
y0∈Y0

y0 f (y0|u)dy0

)
f (u)

1− ν
du

=
∫ 1

ν
E [Y0|U = u]× 1

1− ν
du

≡
∫ 1

ν
m0(u)

1
1− ν

du, (B.2)

where in the third equality we also used that U ∼ U(0, 1) and defined m0(u) ≡ E [Y0|U = u].

Plugging equations (B.1) and (B.2) back into expression (2) yields:

max
ν∈[0,1]

(
δ×

{∫ ν

0
m1(u)du +

∫ 1

ν
m0(u)du

}
− κ(ν)

)
max

ν∈[0,1]

(
δ×

∫ 1

0
m0(u)du + δ×

{∫ ν

0
[m1(u)−m0(u)] du

}
− κ(ν)

)
max

ν∈[0,1]

(
δ×E [Y0] + δ×

∫ ν

0
MTE(u)du− κ(ν)

)
max

ν∈[0,1]

(
δ×

∫ ν

0
MTE(u)du− κ(ν)

)
,

which establishes expression (7).
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C From MTE function to treatment effect parameters

Our main objects of interest are the MTR and MTE functions. This is in part motivated
by the the firm’s decision problem we presented in Sections 2.1 and 2.3. An additional
motivation is that, as shown, for example, in Heckman and Vytlacil (2005), we can use
the MTE function to recover other typical treatment effect parameters of interest. This is
because we can write most target parameters in the following form:

θ = EZ

[∫ 1

0
m1(u)ω1(u, Z)dµ(u)

]
+ EZ

[∫ 1

0
m0(u)ω0(u, Z)dµ(u)

]
, (C.1)

where ω1(·) and ω0(·) are identified weighing functions and µ(·) is an appropriate inte-
grating measure. The subscript Z in the expectations above indicates that they are taken
with respect to Z. Hence, if we know the MTR functions we can compute many target
parameters we might be interested in.

Examples of such target parameters are the ATE:

ATE ≡ E [Y1 −Y0]

=
∫ 1

0
m1(u)du−

∫ 1

0
m0(u)du;

(C.2)

the ATT:

ATT ≡ E [Y1 −Y0|D = 1]

= EZ

[∫ 1

0

1{u ≤ ν(Z)}
Pr(D = 1)

m1(u)du
]
−EZ

[∫ 1

0

1{u ≤ ν(Z)}
Pr(D = 1)

m0(u)du
]

=
1

Pr(D = 1)

{
EZ

[∫ ν(Z)

0
m1(u)du

]
−EZ

[∫ ν(Z)

0
m0(u)du

]}
;

(C.3)

the ATU:

ATU ≡ E [Y1 −Y0|D = 0]

= EZ

[∫ 1

0

1{u > ν(Z)}
Pr(D = 0)

m1(u)du
]
−EZ

[∫ 1

0

1{u > ν(Z)}
Pr(D = 0)

m0(u)du
]

=
1

Pr(D = 0)

{
EZ

[∫ 1

ν(Z)
m1(u)du

]
−EZ

[∫ 1

ν(Z)
m0(u)du

]}
;

(C.4)
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and the LATE:

LATE
(
z, z′

)
≡ E

[
Y1 −Y0

∣∣ν(z) < U ≤ ν(z′)
]

=
∫ 1

0

1{ν(z) < u ≤ ν(z′)}
ν(z′)− ν(z)

m1(u)du−
∫ 1

0

1{ν(z) < u ≤ ν(z′)}
ν(z′)− ν(z)

m0(u)du

=
1

ν(z′)− ν(z)

{∫ ν(z′)

ν(z)
m1(u)du−

∫ ν(z′)

ν(z)
m0(u)du

}
.

(C.5)

Finally, notice that if we set µ(·) to be the Dirac measure and ω1(·) and ω(·) to be -1, 0 or
1 as appropriate, we obtain the MTR and MTE functions back.

D MTE function under different assumptions

We now consider two commonly made assumptions on the DGP to assess whether they
impose enough structure on the resulting MTE function to imply specific guidance on how
to choose the number of cells or values for the propensity score during the experiment.
Under each assumption, we present an example such that no specific guidance is obtained.

D.1 Monotonic MTE function

One possible assumption the researcher might be willing to make is that the marginal
treatment effect function is monotonic. This is necessarily satisfied when the MTE func-
tion is linear, an assumption that is commonly made, as is by construction the approxima-
tion to the MTE function that can be obtained from a single-cell design. We now provide
an example where monotonicity of the MTE function does not necessarily aid in choosing
C or ν(Zc = 1).

To this end, Assume that MTE(u) = 2.7
2+210u . This function is not only monotonic, but it

also is strictly convex and nonnegative. Hence, it is a fairly “well-behaved” function.

In particular, the monotonicity might suggest that a linear approximation might be sat-
isfactory. However, D.1 shows that not to be the case because a linear approximation
might cover a wide range of negative values, which is a marked difference from the true
MTE function. Furthermore, a linear approximation is highly susceptible to values of the
propensity score. As Figure D.1 shows, depending on these values the resulting linear
curve can have very distinct slopes.
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Figure D.1: Different linear approximations for an MTE curve

Given this MTE function, it might seem like having one additional cell might suffice to
obtain a satisfactory approximation. Nevertheless, this need not be the case. Figure D.2
depicts two quadratic approximations to the MTE function. As we can see, neither ap-
proximation is particularly good, and one fails to capture the monotonicity of the MTE
function. This is a result of the range of values taken by the propensity score, which, in
both cases, is limited.

On the other hand, as perhaps expected, when the propensity score covers a wider range
of values, the quality of the approximation can be high, as we show in Figure D.3. Note,
however, that this approximation, unlike the true MTE function, displays negative values.

A priori, it is unclear, however, the curvature of the function, and therefore what the exact
range of propensity score values should be.

D.2 Monotone treatment response

A different and arguably stronger assumption is that of monotone treatment response
(Manski, 2004). It implies that the treatment effects themselves always have the same sign,
which implies that so does the MTE function. However, the previous example suggests
that this will not suffice to make this MTE function sufficiently “well-behaved” for us to
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Figure D.2: Different quadratic approximations for an MTE curve

u
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Figure D.3: Different quadratic approximations for an MTE curve
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obtain precise guidance for the specific design of the experiment. Indeed, the example
below confirms this to be the case.

Assume that Y0|U = u ∼ N
(
0.9u− 3.8u2 + 3.3u3, 1

)
and Y1|Y0 ∼ TN (0, 1, Y0,+∞), so

that Y1 follows a standard normal distribution truncated from below at Y0. The resulting
MTE function is shown in Figure D.4. Unsurprisingly, monotone treatment response en-
sures that the function always has the same sign, but is not even enough to impose, for
instance, monotonicty. Consequently, on its own this assumption is not helpful in inform-
ing specifically how the experiment should be designed and implemented.
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Figure D.4: MTE function under monotone treatment response
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