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Abstract

This paper proposes a nonparametric framework to estimate point-wise price elastici-

ties using aggregate market data. We derive a new constructive price elasticity estima-

tor based on the nonparametric control function framework (Newey et al., 1999), inte-

grate the bootstrap averaged (bagged) nearest neighbors predictor (Demirkaya et al.,

2022) into this framework, and implement the estimation using just-in-time compila-

tion and parallel computation. A series of Monte Carlo simulations across a wide range

of data-generating processes show that our elasticity estimator is fast to compute and

achieves both precise estimates and robust inferences. In an empirical application, we

demonstrate that this method can (1) flexibly estimate price response and substitution

patterns and (2) directly inform optimal pricing and supply-side counterfactuals.
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1 Introduction

Understanding the price elasticities of demand is essential for firms, regulators, and re-

searchers. For a firm, price elasticities within a product line determine optimal prices, while

cross-price elasticities with competitors’ products help characterize the extent of competi-

tion. Outside of a firm, price elasticities also help regulators and researchers determine the

level of markups (Berry et al., 1995), measure market power (Farrell and Shapiro, 1990),

and track policy outcomes.

Estimating price elasticities entails two fundamental difficulties. The first is that price

experiments are rarely available at scale, and without experiments, estimating elasticities us-

ing only observational price-quantity data faces an endogeneity problem. Endogeneity arises

because unobserved demand shifters influence prices and quantity simultaneously, leading

to biased elasticity estimates and potentially costly pricing or policy mistakes.1 The sec-

ond difficulty is that elasticity estimates are sensitive to parametric modeling assumptions,

requiring a flexible demand model to alleviate functional-form restrictions. For decades,

the literature has leveraged domain knowledge to enrich parametric demand models and

to show that these extensions profoundly matter for implied elasticities.2 However, these

extensions are usually limited to their respective contexts, and implementing them can often

be computationally demanding. Academics and practitioners need a flexible, generalizable,

and computationally attractive approach to estimating price elasticities.

To that end, this paper proposes a nonparametric framework to estimate price elastic-

ities using aggregate market-level observational data. We construct a point-wise estimator

of price elasticities using the nonparametric control function framework (Newey et al., 1999)

and demonstrate that this estimator can work together with scalable machine learning pre-

diction methods. In particular, we show that the bootstrap averaged (bagged) nearest

neighbors estimator (Demirkaya et al., 2022) applies well to this framework, given its known

asymptotic properties and attractive finite-sample performance. We further boost the scal-

ability of our estimator by utilizing its closed-form representation and recent developments

in just-in-time parallel programming. The resulting price elasticity estimator demonstrates

desirable performance in simulations across a broad set of data-generating processes as well

1Even if a firm cannot set optimal prices, price endogeneity is still a concern if the firm reacts to demand
shifters unobserved to the researcher.

2To cite a few examples, Berry et al. (1995) capture heterogeneity using random-coefficient logit models,
Erdem et al. (2003) and Hendel and Nevo (2006) capture consumer stockpiling, Kim et al. (2002) and Dubé
(2004) model consumer purchases of multiple goods and multiple units, and Seiler (2013) characterizes
limited consumer awareness of price discounts.
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as a real-world application.

First, we adapt Newey et al. (1999)’s nonparametric triangular simultaneous equation

framework to the setting of demand estimation, leading to a system of two equations. In

the first equation, sales quantity is a function of prices and product characteristics. In the

second equation, prices are influenced by exogenous instrumental variables. Under control

function assumptions, we show that one can constructively identify price sensitivities by

removing the impact of unobserved demand confounders, which are the source of price

endogeneity. This result has intuitive interpretations that connect with the causal directed

acyclic graphs (Pearl, 2009) and, more importantly, implies that one can constructively and

directly estimate price elasticities as a nonlinear function of conditional expectations.

We suggest scalable machine learning methods for these conditional expectations. In

particular, the bootstrap averaged (bagged) nearest neighbors estimator has two attractive

features ideal for our nonparametric framework. First, one can use the jackknife to reduce

finite-sample bias and avoid bias accumulation in nonlinear transformations. Second, one

can use the standard bootstrap procedure for inference, because the bootstrap commutes

with smooth nonlinear functions. On top of the theoretical advantages, this paper integrates

bagged nearest neighbors into elasticity estimation and significantly boosts the scalability of

the estimation by utilizing closed-form representation, just-in-time compilation, and parallel

computation.

We estimate price elasticities in Monte Carlo simulations across a wide range of data-

generating processes and demonstrate that our approach has desirable performance. These

simulations mimic realistic settings and include cases where the data-generating process is a

logit model (McFadden, 1973; Berry, 1994), a random-coefficient logit model (Berry et al.,

1995; Rossi et al., 1996), a model of complements with bundled purchases (Gentzkow, 2007),

and a model of multiple discrete-continuous choices with a budget constraint (Bhat, 2008;

Kim et al., 2002). In each case, we show that our estimator recovers the point-wise own-

and cross-elasticities well, and that our proposed bootstrapped standard errors deliver valid

inferences. Our estimator also demonstrates robust performance in a wide range of sample

sizes and levels of dimensionality—in particular, we can estimate point elasticities across

many products or with small samples.

We next demonstrate how our method can be applied in an empirical setting, focusing

on yogurt products from two leading national brands that come in different package sizes.

Academics and practitioners can use our method at least in two ways. The first is to

estimate a price elasticity profile “globally” to test a theory or to recover the shape of a
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demand curve. By estimating own- and cross-price elasticities point-by-point across the data

support, we find nuanced patterns in how these elasticities vary between products and over

different price points. For example, both the own-demand and the own-price-elasticity curves

are downward-sloping in price (Nocke and Schutz, 2018), and substitution is the strongest

between products by different brands in the same package size. Recall that we obtain these

results without imposing ex-ante assumptions on consumers’ preference structures. As such,

these findings can guide modeling assumptions and test theory predictions.

Another use of our method is to estimate price elasticities “locally” as needed, along the

path of profit maximization. This use-case arises when demand is not the focus per se but is

a means towards maximizing profits or evaluating supply-side policy counterfactuals (where

the demand function is unchanged). We demonstrate that our method can be embedded in

the firm’s profit-maximization algorithm, which estimates point-wise derivatives of the profit

function as needed. In our empirical application, such an algorithm only needs to evaluate

local elasticities at a handful of points before it arrives at the optimal prices, allowing pricing

decisions to be made almost in real-time. Policymakers can also use our method to compute

optimal prices under different counterfactual ownership structures, allowing them to analyze

a merger policy’s impact on equilibrium prices.

This paper primarily contributes to the booming literature on nonparametric demand

estimation. The closest work, Compiani (2022), formulates a micro-founded, differentiated-

good demand system (Berry et al., 1995; Berry and Haile, 2014) into a nonparametric IV

problem and approximates it using Bernstein polynomials. Our paper presents a new point-

wise estimation framework based on nonparametric control functions and is an alternative to

Compiani (2022). Whereas our framework does use standard control function assumptions,

a crucial difference is that it does not rely on Berry and Haile’s linear index assumption

(i.e., utility is separable in one observed characteristic and the unobserved characteristics)

to invert the demand function. In addition, our point-wise estimation routine offers consid-

erable computational advantages and allows one to scale up the demand estimation exercise

to much larger samples, and to accommodate higher dimensions.

The remainder of this paper is organized as follows. Section 2 reviews the related liter-

ature. Section 3 formally introduces our theoretical framework. Section 4 provides details

on our estimation and inference strategy. We further demonstrate the performance of our

method with a series of Monte Carlo simulations in Section 5. Section 6 applies our method

to estimate own- and cross-price elasticities for yogurt and demonstrates how this method

can aid pricing and merger policies. Section 7 concludes the paper.
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2 Related literature

Our paper fits in the nonparametric demand estimation literature. Broadly speaking, this

literature relaxes functional-form assumptions on demand by using regularized, nonpara-

metric estimation methods. We contribute to the literature by achieving regularization with

built-in machine learning algorithms and demonstrating a point-wise estimation route in the

presence of price endogeneity.

The most closely related studies are Compiani (2022) and Compiani and Smith (2021).

Compiani (2022) formulates a micro-founded differentiated-good demand system (Berry

et al., 1995; Berry and Haile, 2014) into a nonparametric IV problem and approximates

the system using Bernstein polynomials. In contrast, our paper formulates demand in the

nonparametric control function framework. One advantage of this approach is that we

do not have to assume that one characteristic is separable in the utility function in order

to invert the demand function (as in Compiani 2022; Berry and Haile 2014).3 Another

advantage is that our estimator is “local” in the sense that one can use it to estimate price

elasticities as needed, such as when optimizing profits or computing counterfactuals, instead

of first estimating the entire “global” demand function. This feature offers a considerable

computational edge.

Second, our paper is also related to the recent marketing literature on aiding manage-

rial pricing decisions. Smith et al. (2019a) present a Bayesian shrinkage estimator to find

substitutions or complementarities across product categories. Misra et al. (2019) formulate

pricing into a multi-arm-bandit problem and present a framework for firms to learn the

optimal price by experimentation. Cong et al. (2021) estimate demand using orthogonal

random forests. Gabel and Timoshenko (2022) estimate price elasticities across a broad

set of products, using deep neural networks to help managers understand the relationship

between a large set of products. Dubé and Misra (2021) presents a framework that combines

a micro-founded demand model with regularized machine learning. They use it to estimate

demand by observed customer segments and set personalized prices. This paper contributes

to previous work by presenting a machine-learning framework that (1) has valid inference,

(2) can be applied to observational data with potentially endogenous prices, and (3) is fast

to compute.

Third, this paper connects broadly to the demand estimation literature in marketing and

3Estimating the inverse demand (Compiani, 2022; Berry and Haile, 2014) does permit structural, non-
separable error terms, whereas our framework assumes separable and uni-dimensional unobservables, which
is standard in the control function literature.
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economics. Dubé (2019) provides an excellent summary. The canonical structural model

characterizes heterogeneous consumers’ choices of one unit of one product from a known

choice set (see, e.g., Berry et al. 1995; Rossi et al. 1996). Nevertheless, empirical studies

in different industries have motivated various extensions of this canonical structure. These

extensions include cases when consumers purchase multiple goods or multiple units (Hendel,

1999a; Kim et al., 2002; Dubé, 2004; Mehta et al., 2010; Chan, 2006), make decisions under

limited consideration (Goeree, 2008; Joo, 2022) or search frictions (De Los Santos et al.,

2012; Abaluck et al., 2022), choose among geographically-differentiated options (Houde,

2012; Magnolfi et al., 2022), and purchase complementary products (Gentzkow, 2007). Our

paper offers a flexible alternative for estimating point-wise price elasticity with minimal

assumptions, which can also be used to test model restrictions.

Fourth, our paper also contributes to the emerging literature on machine learning causal

inference. Demirkaya et al. (2022) prove a range of statistical properties for the bagged

nearest neighbors estimator (they focus on a general case of distributional nearest neighbors).

In this paper, we show that point-wise price elasticity can be formulated on top of the

bagged nearest neighbors algorithm under the control function framework in the presence

of price endogeneity. At a high level, our framework can be seen as another case where one

uses machine learning methods for first-step estimation, then establishes valid second-step

inference for a low-dimensional causal parameter. Related ideas are the double machine

learning framework in Chernozhukov et al. (2017), the causal forests in Wager and Athey

(2018), and the deep neural networks in Farrell et al. (2021).

Finally, our framework can be used to estimate heterogeneous treatment effects (Wager

and Athey, 2018). This paper offers a simple pathway to deal with continuous and endoge-

nous treatments. Compared to the generalized random forests approach (Athey et al., 2019),

our framework is fully nonparametric and allows heterogeneity on the treatment level, which

is of essential interest for our price case.

3 Theoretical framework

In this section, we introduce our theoretical framework for price elasticity estimation. We

first present a nonparametric demand model and list the set of assumptions. Next, we con-

structively identify price elasticities under endogenous prices, and we use this identification

result for estimation. Finally, we intuitively interpret the identification result and connect

it to the directed acyclic graph (Pearl, 2009).
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3.1 Model setup

We assume that product j in market t has sales quantity (or shares) sjt and price pjt, for

j = 1, 2, · · · , J , and t = 1, 2, · · · , T . Let pt = (p1t, p2t, · · · , pJt)T denote the price vector

for products {1, 2, · · · , J} in market t. Here (·)T is the transpose operator. Similarly,

let xjt denote the vector of the observed characteristics for product j in market t and

xt = (xT
1t,x

T
2t, · · · ,xT

Jt)
T denote the stacked vector of observed product characteristics for

market t. We assume that, for all j and t, the underlying relationship between sales quantity,

prices, and the observed product characteristics is:

sjt = fj(pt,xt) + ϵjt, (1)

where fj(·) is the demand function for product j, which is a function of prices and observed

characteristics of all products and is stable across markets. ϵjt is the unobserved demand

shock to product j in market t and has a mean of zero. In this notation, function fj(pt,xt)

already absorbs market-invariant product characteristics, such as quality. Thus, xt captures

observed characteristics that vary across markets (such as promotion, market size, and

seasonality), and ϵjt represents residual quantity shocks not captured by these observed

characteristics. Our goal is to estimate the causal effect of prices on sales quantities, or the

slope of demand, at point (pt,xt):
∂fj(pt, xt)

∂pkt
.

When k = j, this derivative is the own-price sensitivity. When k ̸= j, the cross-price

sensitivity measures the substitution between two products. Whereas this derivative is not

unit-free, one can further normalize it by dividing the ratio between quantity and price to

obtain the price elasticity.

Discussions. Before illustrating how the own- and cross-price derivatives are identified

and estimated, we first highlight that these derivatives are per se important. To see this

point, consider a multi-product monopolist firm that maximizes profits with J products in

market t.4 The firm maximizes expected profit:

J∑
j=1

fj(pt,xt) · (pjt −mcjt),

4The illustration naturally extends to competing multi-product firms. We assume a monopolist to keep
the notation simple.
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where mcjt is the marginal cost for product j in market t. Under regularity assumptions,

which we formalize later, a necessary condition of this profit-maximization problem is to

solve for the following system of first-order conditions.
p1t −mc1t

p2t −mc2t
...

pJt −mcJt

+


∂f1(pt,xt)

∂p1t

∂f2(pt,xt)
∂p1t

· · · ∂fJ (pt,xt)
∂p1t

∂f1(pt,xt)
∂p2t

∂f2(pt,xt)
∂p2t

· · · ∂fJ (pt,xt)
∂p2t

...
...

. . .
...

∂f1(pt,xt)
∂pJt

∂f2(pt,xt)
∂pJt

· · · ∂fJ (pt,xt)
∂pJt


−1

f1(pt, xt)

f2(pt, xt)
...

fJ(pt, xt)

 = 0. (2)

This system of equations defines a fixed-point solution for the price vector pt. Knowing the

costs, the matrix of own- and cross-price derivatives allows the firm to compute the optimal

price vector given a set of (pt,xt). Conversely, for the policymaker who observes market

outcomes (st,pt,xt) and is willing to assume optimal pricing by firms, the system directly

infers markups.

3.2 Assumptions

In the demand model (1), we have not placed any assumptions on the exogeneity of prices

to demand shocks ϵjt. In fact, except for rare cases with experimental variations, the price

vector pt often responds to unobserved demand shocks, such as unmeasured promotional

activities or changes in product characteristics (e.g., packaging). This leads to price en-

dogeneity, or E[ϵjt|pt,xt] ̸= 0. In this paper, we build on and extend the nonparametric

triangular simultaneous equations framework (Newey et al., 1999) to overcome endogeneity.

We further assume the price vector pt is related to a vector of instrumental variables zt:

pt = g(zt) + ut. (3)

where zt can include xt but does not include pt, and function g(·) denotes a nonparametric,

descriptive relationship between prices and zt. The function g(·) can approximate supply-

side pricing behavior (such as in Berry et al., 1995), but can also come from other (potentially

suboptimal) price-setting processes.5

We are now ready to state four identifying assumptions. Assumptions 1 and 2 are core

modeling assumptions. Assumptions 3 and 4 are regularity conditions.

5The interpretation of g(·) contrasts with our interpretation of the demand function fj(·). The demand
function is a structural object and represents the causal relationship between prices and quantities.
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Assumption 1. For the instrumental variables zt, it holds that

E(ut|zt) = 0.

Notice that g(zt) can be the conditional expectation of pt on zt. Thus, this assumption

can follow naturally: g(zt) is the projection of prices onto the space of instrumental variables,

whereas ut captures residual price variation orthogonal to the instruments. The residual

price variation ut can contain elements endogenous to demand shocks ϵjt.

Assumption 2. Denote the excluded instruments as z̃t. For j = 1, 2, · · · , J , it holds that

E(ϵjt|xt, z̃t,ut) = E(ϵjt|ut).

Assumption 2 states that the residual price variation ut, which contains unobserved

demand shocks that co-move with prices, is the source of price endogeneity. That is, condi-

tional on ut, both xt and z̃t do not have direct links to demand shocks and thus drop out

of the conditional expectation. This is the critical assumption in the triangular simultane-

ous equations framework by Newey et al. (1999). The essence of Assumption 2 is that the

instrumental variables zt do not directly impact sales quantities. In Section 3.4, we further

illustrate the intuition behind this assumption using directed acyclic graphs.

Assumption 3. The number of excluded instrumental variables dz̃ is no less than the num-

ber of endogenous variables J , that is, dz̃ ≥ J . Moreover, the Jacobian matrix of g(zt) with

respect to zt is of full column rank.

Assumption 3 is a standard rank condition. It ensures sufficient variation in the instru-

ments to drive price variation and the existence of a well-defined solution.

Assumption 4. fj(pt,xt) for j = 1, 2, · · · , J , E(ϵjt|ut) for j = 1, 2, · · · , J , and g(zt), are

first-order continuously differentiable with respect to all arguments.

Assumption 4 ensures that the partial derivatives exist and have desirable smoothness.

This is a technical condition.

3.3 Identification results

We now present constructive identification results for the own- and cross-price sensitivities

∂pfj(pt,xt), in the presence of endogenous prices. These results are later used directly in
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our estimation. For ease of notation, we define

hj(pt,xt, z̃t) := E(sjt|pt,xt, z̃t),

which is the conditional expectation of sales quantity given prices, product characteristics,

and the excluded instruments. We further define the control function as the conditional

expectation of demand shocks, given the residual price variation ut,

λ(ut) := E(ϵjt|ut),

Taking the conditional expectations on both sides of Equation (1), it follows that

hj(pt,xt, z̃t) = fj(pt,xt) + E(ϵjt|pt,xt, z̃t)

= fj(pt,xt) + λ(ut),
(4)

where the second equality comes from Assumption 2. This equality states that the con-

ditional expectation of sales quantity, hj, is the sum of the demand function fj and the

control function λ. The control function provides a sufficient statistic for the unobserved

confounders that cause price endogeneity. Recall that ut is the residual price variation

orthogonal to the instruments. Therefore, controlling for ut allows one to focus on price

variation driven by the instruments.

We can now directly construct the own- and cross-price sensitivities as a function of

components for which we can find analogs in the data. If we take the derivatives with

respect to the price vector and rearrange the terms, it follows that

∂pt
fj(pt,xt)︸ ︷︷ ︸
J×1

= ∂pt
hj(pt,xt, z̃t)︸ ︷︷ ︸

J×1

+(∂z̃tg(zt)
T︸ ︷︷ ︸

J×dz̃

∂z̃tg(zt)︸ ︷︷ ︸
dz̃×J

)−1 ∂z̃tg(zt)
T︸ ︷︷ ︸

J×dz̃

∂z̃thj(pt,xt, z̃t)︸ ︷︷ ︸
dz̃×1

, (5)

where the terms underneath the braces indicate dimensions of the corresponding matri-

ces. The number of excluded instruments is dz̃ and the number of endogenous prices is J .

Appendix A.1 presents the derivation details.

The left-hand side of Equation (5) is the point-wise price sensitivities. The right-hand

side of Equation (5) is made up of components that can be derived directly from the data:

the slope of sales quantity on price (∂pt
hj(pt,xt, z̃t)), price on instruments (∂z̃tg(zt)), and

sales quantity on instruments (∂z̃thj(pt,xt, z̃t)). It directly follows that price sensitivities

are identified. Formally:
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Theorem 1. Under Assumptions 1-4, ∂pt
fj(pt,xt) are identified.

This constructive identification result is significant because one can use sample analogs

of the right-hand side of Equation (5) to estimate price sensitivities directly. This feature is

nontrivial and differentiates our framework from conventional control function approaches,

where ût are explicitly estimated and then plugged back into the main equation to replace

the omitted variable. As will be more apparent in Section 4, we do not need to estimate

any forms of control functions. All we need for estimation is Theorem 1.

We should note that Newey et al. (1999) arrived at Equation (5) as a side theoretical

result (see Equation (2.3) in their paper). However, to the best of our knowledge, neither

their paper nor the subsequent literature has explored the implications of this result.

3.4 A graphical illustration

Here we demonstrate the identification results using a graphical illustration. As an aside, this

illustration offers intuitive connections between our central identification results (Equation

(5)), the directed acyclic graphs in the computer science literature (Pearl, 2009), and the

classical instrumental variable interpretation. For ease of exposition, we further simplify

Equation (5) to the case with one endogenous price and one excluded instrument. In this

case, Equation (5) becomes:

∂pf(pt,xt) = ∂ph(pt,xt, z̃t)− [−∂z̃tg(zt)−1∂z̃th(pt,xt, z̃t)]. (6)

Figure 1 visualizes Equation (6) using a directed acyclic graph (Pearl, 2009). Our goal

is to evaluate the causal effect of price on sales quantity, ∂pf(pt,xt), which is channel 2

in Figure 1. This partial effect is a causal effect because the unobserved confounder is

held fixed. However, in the observational data, the unobserved confounder affects price

and sales quantity simultaneously through channels 3 and 4 . When prices change in

the observational data, the change in sales quantity comes from two sources. The first is

movements along the demand function ∂pf(pt,xt) (channel 2 ), the object of our interest.

The second source, channels 3 and 4 , comes from price endogeneity. The data directly

gives the total effect of price on sales quantity, ∂ph(pt,xt, z̃t).

With valid instruments and under our identifying assumptions, we can back out, in a

descriptive sense, how changes in the instrumental variable relate to changes in price. That

is, we can recover ∂zg(zt) (channel 1 ). Moreover, the data also identify ∂zh(pt,xt, z̃t),

which is how the instrumental variable is correlated with sales quantity while holding the
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Figure 1: An interpretation of identification

Note: This figure depicts a simplified relationship between sales quantity, price, an unobserved confounder,
and instrumental variables, using directed acyclic graphs (Pearl, 2009).

price constant (channel 1 → 3 ← 4 ).6 The indirect effect of price on sales quantity,

which is channel 3 → 4 , can be worked out by using ∂ph(pt,xt, z̃t) to divide ∂z̃tg(zt)
−1

and then flipping the sign. When this is done, the total effect ∂ph(pt,xt, z̃t) minus the

unwanted indirect effect −∂z̃tg(zt)−1∂z̃th(pt,xt, z̃t) gives us the causal partial effect of price

on quantity.

It is worth noting that our model, which is based on nonparametric control functions,

shares the same graphical intuition as the classical instrumental variable approach. Imbens

(2020) provides further discussions that compare the potential-outcome framework and di-

rect acyclic graphs.

4 Estimation and Inference

Equation (5) provides a complete and straightforward roadmap for estimation. The left-

hand side of Equation (5) is the object of interest, whereas the right-hand side involves

three partial derivatives: ∂phj(pt,xt, zt), ∂zg(zt), and ∂zhj(pt,xt, zt). By definition, both

hj(pt,xt, zt) and g(zt) are conditional expectations, or equivalently, predictions.7 Once the

conditional expectation functions are known, their partial derivatives can be well-estimated

6Price is held constant here, thus we use the notation 3 ← 4 instead of 3 → 4 . For details on
these notations, see Pearl (2009).

7A conditional expectation is the solution of the least-squares prediction problem.
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by numerical methods such as finite differences. In this sense, the estimation of price elas-

ticities is transformed into multiple intermediate prediction tasks.

The central problem now shifts to how to make good predictions. Classical nonparametric

methods, such as kernel estimation, suffer from the curse of dimensionality and are gener-

ally non-scalable to modern data sets. However, whereas modern machine-learning methods

are more scalable than classical nonparametrics, not every machine-learning method can be

used in our framework because price elasticity estimation places a few extra requirements on

inference and implementation. First, each prediction needs to be precise and have low bias.

The price sensitivity estimates are nonlinear combinations of multiple prediction terms, and

the optimal prices are nonlinear functions of price sensitivities. These nonlinear transfor-

mations could magnify the initial prediction bias. Second, the firm needs to know both

the recommended pricing policy and the uncertainty of this recommendation. The optimal

pricing policy changes with the degree of uncertainty for the demand estimate (Dubé and

Misra, 2021). This requires valid inference of the price sensitivities, i.e., the estimator should

have known asymptotic properties. Third, practical model implementation requires that the

model is computationally attractive and scalable to large data sets.

In this paper, we propose to use the bootstrap averaged (”bagged”) nearest neighbors

estimator (Biau et al., 2010) as a prediction method. In this section, we introduce the

estimator and demonstrate that it satisfies the desired properties: (1) low finite-sample bias,

(2) valid inference, and (3) computational scalability. We close this section by discussing

other practical considerations for implementation.

4.1 The bagged nearest neighbors estimator

Here we introduce the bootstrap averaged (bagged) nearest neighbors estimator for pre-

diction and inference. In our case, estimation requires repeated point-wise predictions of

E(sjt|pt,xt, z̃t) to obtain multiple derivatives. For exposition, we represent the general pre-

diction goal as estimating the conditional expectation of yi at point w0, E (yi |wi = w0),

given an i.i.d. sample of size n with (yi,wi)
n
i=1. Here, y is a scalar, and w ∈ Rd has a fixed

but potentially large dimension d. For example, if the task is to predict E(sjt|pt,xt, z̃t),

then yi is sjt, and wi is (pt,xt, z̃t).
8

Similar to the k nearest neighbors and the random forests estimators, the bagged nearest

neighbors estimator averages across neighboring observations in the Rd space of w to pre-

8In this section, we use notation i = 1, . . . , n to represent an observation. This notation follows the
machine learning causal inference literature.
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dict E (yi |wi = w0). The key difference between them is how “neighboring” observations

are weighted. The k nearest neighbors estimator assigns equal weights to the nearest k

observations, while the random forests estimator assigns random weights out of a splitting

algorithm. For the bagged nearest neighbors estimator, the weights are analogous to draw-

ing a subsample, pulling out the outcomes of the closest observation within this subsample,

and averaging all such outcome y’s from all possible subsamples.

In mathematical terms, let {i1, · · · , im}, with i1 < i2 < · · · < im and m ≤ n, denote a

subset of size m from the index set {1, · · · , n}. With this definition, {(yij ,wij)
m
j=1} denotes

a subsample of the data. We further denote the outcome y of the closest observation in

Euclidean distance to w0 in this subsample as y(1)(w0; (yi1 ,wi1), (yi2 ,wi2), . . . , (yim ,wim)).

Then, the bagged nearest neighbors estimator with a subsampling scale m is defined as the

average of all y(1)’s from all possible subsamples of size m, i.e.,

τn(m)(w0) =

(
n

m

)−1 ∑
1≤i1<i2<...<im≤n

y(1)(w0; (yi1 ,wi1), (yi2 ,wi2), . . . , (yim ,wim)), (7)

where
(
n
m

)
, the binomial coefficient of n chooses m, is the number of all possible subsamples.

4.2 Jackknife bias reduction

We further reduce prediction bias using a generalized Jackknife approach. Biau et al. (2010);

Biau and Devroye (2015) derive the theoretical form of the bias for the bagged nearest

neighbors and show that the bias’s first-order term is proportional to m−2/d, where m is

the subsample size and d is the dimension of w. Specifically, the asymptotic prediction bias

follows the theorem below under mild assumptions.

Theorem 2. (Biau et al., 2010) Given w0 ∈ supp(w),

Bias(τn(m)(w0)) = cm−2/d + o(m−2/d),

where c is a constant depending on the distribution of w, the focal point w0, and the dimen-

sionality d, but not on the choice of subsample size m. For details, see Appendix A.3.

Demirkaya et al. (2022) further proposes a generalized jackknife approach to remove the

first-order prediction bias. To illustrate, consider two bagged nearest neighbors predictors

with different subsampling scales m1 and m2 (m1 ̸= m2). By the above theorem, their
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associated asymptotic prediction biases have the following forms:

Bias(τn(m1)(w0)) = cm
−2/d
1 + o(m

−2/d
1 ),

Bias(τn(m2)(w0)) = cm
−2/d
2 + o(m

−2/d
2 ).

With the appropriate choice of weights (θ1, θ2), determined by m1, m2, and d, the weighted

sum of these two predictors, θ1τn(m1)(w0) + θ2τn(m2)(w0), can be free of first-order predic-

tion bias. An example is that whenm2 = 2m1 and d = 3, −1.70 τn(m1)(x0)+2.70 τn(m2)(x0)

is free of first-order prediction bias. Demirkaya et al. (2022) shows that this simple procedure

can substantially improve finite sample prediction performance.

4.3 Statistical inference

Various aspects of the asymptotic properties of the bagged nearest neighbors estimator have

been established by Biau et al. (2010); Demirkaya et al. (2022). For statistical inference,

Demirkaya et al. (2022) has shown that the bagged nearest neighbors estimator converges

asymptotically to a normal distribution. Formally,

Theorem 3. (Demirkaya et al., 2022) Given w0 ∈ supp(w), under mild assumptions, and

assuming m→∞ and m
/
n→ 0, then for some positive σn with σ2

n = O(m
n
), as n→∞,

τn(m)(w0)− E(y|w = w0)− Bias(τn(m)(w0))

σn

D−→ N(0, 1).

Demirkaya et al. (2022) shows that the jackknife procedure does not change the asymp-

totic normality property. The bless of proven inference results is an attractive feature for few

machine-learning methods, except for the random forests (Wager and Athey, 2018) and the

second-step parameters inference after the first-step use of neural networks (Farrell et al.,

2021) and other machine models under an orthogonal structure (Chernozhukov et al., 2017).

However, our goal is not demand prediction per se. Instead, our framework uses multiple

demand predictions to estimate price elasticities, and ultimately, infer optimal prices. Sta-

tistical inference in our case is even more challenging because our objects of interest involve

nonlinear transformations and consist of correlated prediction components.

We address this problem by proving that the standard bootstrap procedure derives valid

inferences for the bagged nearest neighbors estimator defined in Equation (7). Because

the bootstrap commutes with smooth functions (Bickel and Freedman, 1981), the standard

bootstrap procedure applies as long as the final estimator is a smooth function of multiple
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bagged nearest neighbors predictors, which is precisely our case. By applying the bootstrap

to the final estimator, its nonlinearity and the correlation between different components are

handled implicitly. The key to the above convenience is the theorem below. The proof is

allocated to Appendix A.3. It suggests that the bootstrap can approximate the asymptotic

normal distribution of the bagged nearest neighbors estimator. Interested readers may refer

to Demirkaya et al. (2022) for other forms of convergence results.

Theorem 4. Let Gn be the empirical distribution of our sample (yi,wi)
n
i=1. Given (yi,wi)

n
i=1,

let (y∗i ,w
∗
i )

n
i=1 be the conditionally independent bootstrap sample with common distribution

Gn. The bagged nearest neighbors estimator defined in this bootstrap sample is then

τ ∗n(m)(w0) =

(
n

m

)−1 ∑
1≤i1<i2<...<im≤n

y(1)(w0; (y
∗
i1
,w∗

i1
), (y∗i2 ,w

∗
i2
), . . . , (y∗im ,w

∗
im)).

Given w0 ∈ supp(w) and σn in Theorem 3, under mild assumptions, and assuming m→∞
and m

/
n→ 0, then for almost all sample sequences, as n→∞,

τ ∗n(m)(w0)− E∗τ ∗n(m)(w0)

σn

D−→ N(0, 1).

4.4 Scalability and implementation

In this section, we discuss practical issues when implementing our estimation strategy. We

first present an equivalent L-representation of the bagged nearest neighbors estimator, which

provides a closed-form representation of the estimator that substantially eases computa-

tional burden. We then discuss code acceleration using just-in-time compilation and paral-

lel computing. We streamline and implement these routines in Python for price elasticity

estimation. This combination of L-representation and programming techniques ensures our

approach’s scalability and practical usability. We discuss parameter tuning at the end of

the section.

L-representation. Modern firms or researchers often have large datasets. They often

estimate price elasticities nonparametrically and would like the estimation procedure to

be scalable. As defined in Equation (7), the bagged nearest neighbors involve repeatedly

drawing subsamples and averaging between them. The heavy computational burden from

subsampling is prohibitive when both n and m are large, limiting its usability in cases where

flexible estimation methods are most needed. Fortunately, the bagged nearest neighbors
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predictor we use has an equivalent L-statistics form (Steele, 2009), which is

τn(m)(w0) =

(
n

m

)−1{(n− 1

m− 1

)
y(1) +

(
n− 2

m− 1

)
y(2) + · · ·+

(
m− 1

m− 1

)
y(n−m+1)

}
,

where y(1) is the outcome y of the nearest w to w0 in the whole sample, y(2) is the outcome

y of the second nearest w to w0 in the whole sample, and so on.

The L-representation implies using closed-form weights for computation instead of draw-

ing subsamples. Given subsampling scale m, it takes only three steps to form a bagged

nearest neighbors predictor. First, compute a closed-form weight vector. Second, sort the

observations in the whole sample based on their distances from w0 and the outcome vector

after sorting. Third, compute the inner product of the two vectors from the previous steps.

This algebraic trick substantially eases the computational burden and makes bagged nearest

neighbors scalable to large data sets.

Just-in-time compilation and parallel computation. Using a just-in-time compiler

and parallel computation, the above weighted sum strategy can be further integrated and

streamlined for elasticity estimation in Python. We manage to utilize numba, a high-

performance just-in-time (JIT) compiler, to translate Python functions to optimized industry-

standard native machine code at runtime. For our case, the numba-translated Python func-

tions are accelerated 100 times compared to native Python functions. On the other hand, the

use of numba also helps avoid the built-in Global Interpreter Lock (GIL) in Python so that

we can make full use of our multi-core CPUs with parallel computation by multi-threading.

For our case, multi-threading works best when bootstrapping for inference. On our 10-core

desktop PC, the execution time of a multi-threaded implementation is about 1/10 that of a

single-threaded implementation.

Hyperparameter tuning. The bagged nearest neighbors average the 1-nearest neigh-

bors from subsamples of scale m. The parameter m thus becomes a tuning parameter or

hyperparameter. A large m means higher weights for observations near the point of interest,

focusing the estimation around a local area of the sample. A small m puts flatter weight on

a wider sample area, reduces the estimates’ variance, but bears the risk of over-smoothing

the shape of elasticity structure.

One practical convention for choosing the tuning parameter is the k−fold cross-validation.

This procedure adds an extra layer to existing machine-learning algorithms and thus mit-

igates concerns about the choice of tuning parameters. Nevertheless, unlike the task of
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predicting an outcome variable, we do not observe the actual price elasticities. One way to

mitigate this concern is to impose an extra assumption. That is, assume that good predic-

tions in sales quantities or some other observable proxies can lead to reasonable estimates

of price elasticities. In this way, k−fold cross-validation can be utilized for the forecasts of

sales quantities or other proxies, and we get a choice for the tuning parameter m.9

In our Monte Carlo simulations, we explore a range of tuning parameters and assess the

robustness of our estimates across them. Our finding is robust under a range of choices for

the tuning parameter m. In our empirical study, we conduct 5-fold cross-validation on the

forecasts of sales quantities. The resulting loss curves in terms of mean squared prediction

errors exhibit a classical U-shape, and we pick the ones with minimum losses as the tuning

parameters. Nevertheless, the “best practice” of hyperparameter tuning still needs more

exploration and practical experience.

5 Monte Carlo simulations

In this section, we demonstrate the performance of our nonparametric price-elasticity esti-

mator through a broad set of Monte Carlo simulations. These simulations focus on data-

generating processes (DGPs) commonly used to model demand in empirical settings. They

also mimic the typical amount of data and price variation feasible to researchers. Thus,

these simulations allow us to evaluate the finite-sample behavior of our estimator in realistic

settings and compare its estimates to the DGPs’ ground truth.

5.1 Random-coefficient logit demand

We start with the random-coefficient demand model, a framework often used in empirical

demand analysis (Berry et al., 1995). The data-generating process is that each consumer

has a logit demand and chooses among a fixed set of alternatives. Preferences are fixed

within each consumer and differ across consumers. Similar DGPs are used to characterize

micro-level choice data (Rossi et al., 1996). A special case is logit demand (McFadden, 1973;

Berry, 1994), in which consumers are homogeneous apart from demand shocks.

9Another scenario is that, at least for a subset of the data, the price elasticities are also observable. In
this case, k−fold cross-validation can be directly conducted on the elasticities. But the new concern for this
case is the representativeness of these observed price elasticities.
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Setup. Let ι index consumers. Let j = 1, 2, ..., J index a fixed set of products. And let t

index markets (t can also be interpreted as periods). Consumer ι buys at most one product

out of the choice set and one unit of that product. If she buys product j, she derives utility

uιjt = βιj + αι pjt + ξjt + ϵιjt ,

where βιj characterizes product j’s match value to consumer ι, αι is the consumer’s price

sensitivity, ξjt is the product’s unobserved characteristics in market t following a uniform

distribution between [−0.5, 0.5), and ϵιjt is a type-I extreme value utility shock. If the

consumer chooses the outside good, she gets uι0t = ϵι0t.

At the individual level, this model gives a logit choice probability, which has a closed-form

derivative on price. Specifically, the probability of the consumer choosing j is

sιjt =
exp(βιj + αι pjt + ξjt)

1 +
∑J

k=1 exp(βιk + αι pkt + ξkt)
.

And the derivative of individual choice probabilities on own price and other products’ prices

are

∂sιjt
∂pkt

=

αιsιjt(1− sιjt) if j = k,

−αιsιjtsιkt if j ̸= k.

Researchers do not see individual-level choice probabilities. Instead, they observe the

total sales quantity for each product in each market. Denote the vector of consumer hetero-

geneity Θι = (βι1, ..., βιJ , αι). In the model, sales quantities are the sum of choice probabil-

ities across all individuals:

sjt =M
∫
ι

sιjtdF (Θι),

Where constant M is the number of consumers in the market and F (Θι) is the consumer

preference distribution. The derivative of sales quantity is

∂sjt
∂pkt

=M
∫
ι

∂sιjt
∂pkt

dF (Θι).

We have not yet specified the distribution of consumer preferences, F (Θι). We consider

three cases for this distribution. In the first case, consumer preferences are homogeneous.

This case reduces to the logit model. In our simulations, we assume β equals 0.4 for all

products and α = −3.
In the second case, consumer preference parameters follow independent normal distri-
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butions. This specification is common in empirical applications of the random-coefficient

demand model. Specifically, β and α follow independent normal distributions with means

of 0 and −3 and standard deviations of 0.8 and 0.5, respectively.

The third specification further allows for the correlation between demand intercepts and

random coefficients. Suppose income incι drives consumers’ demand for product quality

(part of the intercept) and price sensitivities. We have βιj = b0j + b1jincι and αι = a0 +

a1incι + a2νι, where ν follows a standard normal distribution. In our simulations, we take

incι from a standard normal distribution (think of it as log income). In addition, we assume

b0 = 0 and b1 = 0.8 for all products, a0 = −3, and a1 = a2 = 0.5.

We allow prices to be endogenous to unobserved product characteristics, ξjt. For all

three DGPs, we specify a reduced-form selection type equation:

pt = 0.51+ 0.5 zt + 0.5 ξt + 0.5 et.

Prices are functions of (own) unobserved characteristics ξ, instruments z, and exogenous

shocks e. In addition to ξ, the other two components z and e also follow uniform distributions

in [−0.5, 0.5). The inclusion of e reduces the power of price instruments and mimics realistic

settings.

Below, we present Monte Carlo simulation results across the three cases. For the logit

model, in each market t = 1, ..., T , we compute the closed-form choice probability for a

representative consumer as the market share. In the baseline, we assume that consumers

choose among J = 4 products and the outside option. For the two cases that involve

random coefficients, we simulate 500 consumers whose choice probabilities are integrated to

compute the market share. For each DGP, we simulate 100 samples, each with a sample

size of T = 20, 000. In the estimation, we hold the tuning parameter m = 7. We later vary

the sample size, tuning parameter m, as well as the number of products, to evaluate the

estimator’s performance under different scenarios.

For each sample, we estimate point elasticities (with bootstrap standard errors) at the

mid-point price (p = $0.5 in our simulation settings). We also estimate the profile of price

elasticities for a broad set of price points in a smaller set of samples.

Simulation results. Table 1 demonstrates the elasticities of product 1’s and product

2’s quantities to product 1’s price, representing one own-elasticity and one cross-elasticity

estimand. For each elasticity, we present the ground truth, the mean of our point estimates,

the mean of our bootstrapped standard error, and the standard deviation of our point
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Table 1: Monte Carlo simulation results: baseline

model elasticity true value mean esti. mean std. err. std. of esti.

logit
own -0.753 -0.774 0.067 0.068
cross 0.247 0.240 0.065 0.075

independent RC logit
own -1.273 -1.305 0.089 0.082
cross 0.200 0.195 0.079 0.075

correlated RC logit
own -1.333 -1.363 0.094 0.100
cross 0.204 0.205 0.082 0.085

Note: Column 1 presents the true elasticity at the mid-point price. Column 2 is the mean of the nonpara-
metric point estimates. Column 3 presents the mean of the bootstrapped standard error. Column 4 is the
standard deviation of the point estimates across Monte Carlo experiments. Number of products J = 4.
Sample size T = 20, 000. Tuning parameter m = 7.

estimates, all taken across Monte Carlo experiments.

We find that the point estimates fall tightly around the true value. Across the three

DGPs, the mean of own- and cross-elasticity estimates are within 0.03 and 0.01 of the true

value, respectively. These gaps are statistically small, given the standard errors.

We also find that the estimated standard errors (column 3) align with the standard

deviation of the point estimates (column 4). The former is the estimated uncertainty for each

point estimate, which is then averaged across estimates. The latter is a direct observation

of the variability of point estimates across Monte Carlo samples. We find that the two

metrics align, suggesting that the bootstrapped standard errors correctly reflect the degree

of uncertainty as expected by Theorem 4.

Next, we vary the sample size, tuning parameters, and the number of products to assess

how the estimator performs in a broader range of cases. We first vary the sample size T by

factors of four. Table 2 demonstrates that our estimator is still usable with a small sample of

5,000 observations. However, standard errors, in this case, are large relative to the elasticity

values, especially for cross elasticities. With a growing sample size, the mean of the estimate

remains close to the true value, and standard errors shrink by a factor that roughly equals

the square root of the sample size. This finding aligns with Theorems 3 and 4, which state

that the convergence rate for bagged nearest neighbors is
√

T/m. The point estimates are

precise with large samples, such as when T = 320, 000.

Point estimation (including computing bootstrap standard errors from 100 bootstrapped

samples) is reasonably fast with only the computing power of CPUs, even with large sample
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Table 2: Simulation results across sample sizes

sample size elasticity true value mean esti. mean std. err. std. of esti.

T = 5, 000
own -1.333 -1.386 0.186 0.179
cross 0.204 0.210 0.165 0.151

T = 20, 000
own -1.333 -1.363 0.094 0.100
cross 0.204 0.205 0.082 0.085

T = 80, 000
own -1.329 -1.371 0.046 0.048
cross 0.204 0.211 0.040 0.039

T = 320, 000
own -1.338 -1.374 0.023 0.025
cross 0.205 0.208 0.020 0.015

Note: See notes in Table 1. Number of products J = 4. Tuning parameter m = 7. Varying sample sizes T .

size. On our personal computer,10 we find that at T = 20, 000, one point estimate takes

0.17 seconds. This time increases to 0.84 seconds for T = 80, 000 and 4.88 seconds for

T = 320, 000. This efficiency makes the estimator scalable with very large samples.

We have so far fixed the tuning parameters at m = 7. Recall that the bagged nearest

neighbor estimator works as if we draw subsamples of size m, take the nearest neighbor

of each subsample, and average across them. A small m such as m = 7 implies that we

use information from a large neighborhood when estimating each point elasticity. Using a

broader part of the sample leverages more information and produces more stable estimates.

However, although we use the generalized jackknife to subtract the first-order bias (Theorem

A.1), it might still be prone to higher-order biases (e.g., over-smoothing demand) and more

sensitive than cases where one only uses local information.

Table 3 investigates how the estimator performs with varying m. Holding the sample

size T and dimensionality J fixed, we find that a very small m = 3 produces more precise

but significantly biased estimates. On the other hand, using larger m = 20 leads to noisier

estimates. Our main simulation exercise uses m = 7 because no visible bias remains, and

one would only get noisier estimates for m > 7. Under different DGPs, one could use cross-

validation to determine a sensible m, as we do in our empirical exercise. Or one could use

a more conservative, larger m.

Like all nonparametric estimators, our estimator suffers from the curse of dimensionality.

This occurs because of the lack of parametric functional forms to project the model across

dimensions. As a result, as the size of consumers’ choice set, J , grows, one potentially needs

10The specification of our working computer is Intel Core i9-10900K @ 3.70GHz, with 128GB RAM, and
the operating systems are Ubuntu Server 20.04 LTS and Windows 10 Enterprise.
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Table 3: Simulation results: tuning parameters

tuning parameter elasticity true value mean esti. mean std. err. std. of esti.

m = 3
own -1.331 -1.778 0.062 0.070
cross 0.204 0.275 0.051 0.057

m = 5
own -1.333 -1.451 0.071 0.079
cross 0.204 0.209 0.064 0.067

m = 7
own -1.333 -1.363 0.094 0.100
cross 0.204 0.205 0.082 0.085

m = 10
own -1.330 -1.357 0.115 0.115
cross 0.204 0.187 0.101 0.116

m = 20
own -1.333 -1.311 0.166 0.181
cross 0.204 0.155 0.152 0.144

Note: See notes in Table 1. Number of products J = 4. Sample size T = 20, 000. Varying tuning parameters
m.

a much larger sample to estimate all point elasticities reliably. We fixed the dimensionality

in our previous simulations at J = 4. This choice-set size can characterize a concentrated

market, such as demand within a category for most consumer packaged goods (see our

empirical example). Nevertheless, this choice-set size is small for less-concentrated markets.

We now explore how the model performs with larger J ’s using a larger sample of T = 320, 000

and focusing on more local variations, by setting m = 30.11

We can still estimate the own and cross elasticities reasonably well within J ≤ 12.

Standard errors are larger for larger J ’s (holding fixed T and m). This scale of choice

set is comparable to many parametric exercises using random-coefficient logit models. A

bonus point is that, even at this sample size, the computation time for one point estimate

(including bootstrap standard errors) is still around five seconds. Our model is still usable

at larger J ’s, provided that the researcher has access to a sizable data set.

When J goes to 16, we observe significant biases on the own-elasticity term. We therefore

recommend practical caution when using our estimator for large J ’s without increasing the

sample size T and the tuning parameter m.

Finally, thus far we have only focused on point elasticities at the mid-point price. The

top panels of Figure 2 provide one realization of point-elasticity estimates across a wide

range of prices when the DGP comes from a random-coefficient logit model. This result

11Our intuition behind setting a higher m is to use more local observations. This is because a higher
dimensionality increases model complexity (the number of parameters at every point, here own and cross
elasticities), making it more difficult to use non-local observations without introducing biases.
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Table 4: Simulation results: number of products

number of products elasticity true value mean esti. mean std. err. std. of esti.

J = 4
own -1.334 -1.330 0.053 0.056
cross 0.204 0.207 0.049 0.045

J = 8
own -1.394 -1.405 0.083 0.082
cross 0.128 0.132 0.070 0.087

J = 12
own -1.428 -1.592 0.118 0.111
cross 0.095 0.096 0.094 0.083

J = 16
own -1.441 -1.896 0.152 0.150
cross 0.075 0.081 0.115 0.104

Note: See notes in Table 1. Sample size T = 320, 000. Tuning parameter m = 30. Varying number of
products J .

shows that our estimator can recover the profile of elasticities as a flexible function of prices

(and other observables).

5.2 Other data-generating processes

We have focused on data-generating processes that fall into the mixed logit class but have

not leveraged the mixed logit structure for estimation. For example, our estimation model

does not impose that products are substitutes or that consumers choose one alternative and

one unit of the alternative. It is natural to imagine that our estimator works on smooth

demand from other DGPs.

Here we consider two other data-generating processes. In the first case, some products

are substitutes whereas others are complements. We model complements in a way similar

to Gentzkow (2007), where consumers choose individual products or product bundles, and

the additional utility (or disutility) from buying a bundle can generate complementarity (or

additional substitutability). In the second case, consumers can choose many products and

multiple quantities of each product. We model this case based on the multiple discrete-

continuous demand framework from Kim et al. (2002). But different from Kim et al., we do

not assume additively-separable payoff functions across varieties, and the nonseparability

introduces additional substitution between varieties. Appendix B outlines these two data-

generating processes in more detail.

In both cases, we demonstrate that our estimator can reliably recover the own and

cross elasticities. Table 5 indicates that, with the same sample size and tuning parameters
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Figure 2: Own and cross elasticity profiles

(a) Correlated BLP model

(b) Complementarity

(c) Variety and Quantity

Note: The top panels are plots of the mean own- and cross-price elasticities along own price levels from 10
Monte Carlo simulations of a random-coefficient logit model. The middle panels are a model of substitutes
and complements. The bottom panels are of a model of variety and quantities. Sample size T = 20, 000,
number of products J = 3. Tuning parameter fixed at m = 7. For further model details, see Appendix B.
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Table 5: Simulation results: number of products

model elasticity true value mean esti. mean std. err. std. of esti.

complements
own -0.934 -0.931 0.057 0.057
cross -0.185 -0.173 0.052 0.054

variety and quantity
own -1.989 -1.964 0.083 0.092
cross 0.163 0.163 0.110 0.129

Note: This table shows Monte Carlo simulation results when the data-generating processes contain com-
plements (Gentzkow, 2007) or when the DGP allows consumers to choose from multiple products and buy
multiple quantities (Kim et al., 2002). Sample size T = 20, 000. Tuning parameter m = 7. Number of
products J = 3.

as our benchmark, both own and cross elasticities under both DGPs are unbiased and

precisely estimated. Note that, for reasons unrelated to our estimator, we limit the choice-

set size to J = 3. This choice of J is because solving the optimal consumer choices in the

variety-quantity model requires enumerating all possible bundles, introducing an enormous

computation burden when J is large (we cannot use Kim et al.’s approach, which relies on

additive separability).

In addition to Table 5, the bottom panel of Figure 2 demonstrates that we can recover the

elasticities within the data support, for the case where two of the products are complements

or when consumers choose a variety of products at different quantities.

6 Empirical Application

This section applies our method to estimate the price elasticities of yogurt. The yogurt

category is widely studied in marketing and economics, and is often used as a touchstone for

testing new methods. The literature has emphasized various aspects of consumer behavior

that depart from canonical mixed logit models and has thus adopted different methods to

accommodate these departures.12 Our method estimates own- and cross-price elasticities

among popular products without imposing a priori structural assumptions on consumer

behavior. As such, this exercise not only serves to demonstrate how our method can be

12The canonical (mixed) logit model assumes that a consumer purchases at most one unit of one product
among all available products. Extensive research has demonstrated departures from this assumption and
has proposed solutions. For example, Kim et al. (2002) studies consumers’ choices of various products in
multiple quantities. Pavlidis and Ellickson (2018) examine consumer switching costs across products and
brands and discuss its implications for dynamic pricing. Huang and Bronnenberg (2018) study the costly
consideration-set formation in a demand system, where consumers can choose various products in multiple
quantities.
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applied in practice, but also presents elasticity estimates that inform the industry’s markups

and extent of competition.

6.1 Sample construction

We use the IRI academic dataset (Bronnenberg et al., 2008) for this exercise. The IRI data

contain weekly sales quantity and prices across chains in several US states, from 2001 to

2007. Appendix Tables A1 and A2 present summary statistics.

Yoplait is the most popular brand during our sample period. Dannon is the second most

popular brand, with two-thirds of the sales of Yoplait. Private labels are prevalent in this

sample period but do not dominate the market. The total sales quantity of private labels,

as a whole, ranks below Dannon and Yoplait and above all other brands. We group private

labels together and consider them the third most popular “brand.”

Like many consumer packaged goods, each yogurt product line is typically offered in

multiple sizes. We divide products by size for the top two brands, Yoplait and Dannon,

then report total sales quantity and average unit price by size. We find that both Yoplait

and Dannon offer two vertically-different product lines. One is at around $1.7 per pound,

and the other is premium, at around $2.4 per pound. We group products with similar sizes

and unit prices. We group Dannon’s 0.375 pounds (6 oz) and 0.5 pounds (8 oz) sizes together

as Dannon small, and we group Dannon’s 1.5 pounds (24 oz) and 2 pounds (32 oz) sizes

together as Dannon large. For Yoplait, Yoplait 0.375 pounds (6 oz) is defined to be Yoplait

small and Yoplait 1.5 pounds (24 oz) is Yoplait large. Since Yoplait offers more products at

the premium line, we define Yoplait 0.25 pounds (4 oz), 0.6875 pounds (11 oz), and 1.125

pounds (18 oz) as Yoplait premium. For Private label yogurts, we do not further distinguish

between sizes and use their distinct sum of sales in pounds to divide the total revenue and

determine their prices.

With the above definitions, we eventually arrive at a sample of 156, 580 observations at

the store-week level. For each observation, we have the prices and quantities for Dannon

small, Dannon large, Yoplait small, Yoplait large, Yoplait premium, and Private label. Our

analysis focuses on the sales quantity of Dannon small, Dannon large, Yoplait small, and

Yoplait large.

We control demand shocks at the store, chain, and time levels. The nonparametric

demand model in Equation (1) makes it challenging to control for fixed effects without

further functional-form assumptions. Instead, we measure demand changes using observed

variables and control for these factors. Specifically, we use the IRI dataset’s all-commodity
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volume (ACV) to control for size differences across stores. In addition, to control for chain-

level differences, we construct Dannon’s sales quantity and Private label’s sales quantity as

a fraction of the total yogurt sales quantity in the chain. Our interpretation is that different

chains allocate different shelf spaces between the two top brands and their private labels,

and the variables capture persistent differences in shelf space. We also include the week of

the year and the year (both rescaled to between 0 and 1) as control variables, to capture

seasonality and the time trend. Although our analysis uses proxy variables instead of fixed

effects, we do not make functional-form restrictions, thus permitting these controls to enter

the model flexibly.

We instrument for the potentially endogenous prices using Hausman instruments (Haus-

man et al., 1994; Nevo, 2001). If one makes the identifying assumption that products in

different geographic markets have independent demand shocks, common price movements

for the same product across the market reflect common cost shocks. Given this assumption,

we use a product’s average price in other markets to instrument its price in the focal market.

The identifying assumption fails if demand shocks are correlated between markets. Sup-

pose demand shocks are positively correlated; one would expect that our elasticity estimates

are upward-biased (that is, the true elasticities are more negative than our estimated elas-

ticities). Our empirical exercise mainly serves to demonstrate the nonparametric demand

estimation method. The reader should carefully select suitable price instrument(s) to apply

our method in a given context.

6.2 Hyperparameter tuning

To tune the hyperparameter m, We conduct five-fold cross-validation to predict sales quan-

tity for each m. We use the sum of mean squared errors from the five validation folds as

the cross-validation loss function. The results are reported in Figure 3. Except for one

irregular point (m = 1 for Yoplait small), we have a U-shaped curve for all four products.

The average loss across all samples first decreases with m and later increases with m.

Following conventional practices, we choose the m that delivers a minor loss for each

product. These are m = 5, 11, 5, and 2 for Dannon small, Yoplait small, Dannon large,

and Yoplait large, respectively. We apply these tuning-parameter choices to estimate price

elasticities. An implicit assumption is that the value of m that predicts sales quantity well

also gives reasonable price elasticity estimates. Our cross-validation procedure has produced

the same tuning parameters for Dannon but has chosen different tuning parameters for the

two Yoplait products. In particular, m is surprisingly tiny for Yoplait large.
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Figure 3: Five-fold Cross-Validation

(a) Dannon small (b) Yoplait small

(c) Dannon large (d) Yoplait large

Note: This figure reports the five-fold cross-validation score when choosing different hyperparameters m for
Dannon small, Dannon large, Yoplait small, and Yoplait large. The chosen loss function is the sum of the
mean squared errors in predicting sales quantity from each validation fold.
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6.3 Empirical findings

Table 6 presents the average own- and cross-elasticities at the median price, and Figure 4

demonstrates how own-price elasticities vary with the price for each product. The bootstrap

95% confidence intervals for all these point estimations are reported in dashed lines, and the

areas between are shaded. We highlight several findings below.

First, the estimated own-price elasticities are all negative and large in magnitude. In

contrast, the estimated cross-price elasticities are primarily positive and significant in size,

which suggests intense competition in the yogurt category.

Second, most products’ estimated own-price elasticities’ absolute values are non-decreasing

with their own prices. The downward sloping pattern of own-price elasticity is sometimes

called Marshall’s second law of demand (Nocke and Schutz, 2018), which is commonly as-

sumed in the theoretical industrial organization literature. We provide direct evidence that

supports this assumption.

Third, for most products, the highest cross-price elasticities are with the opposite brand’s

product at the same size. This finding would be consistent with a model where different

consumers (e.g., with varying family sizes) prefer different sizes, and each consumer chooses

between brands within the preferred size. In structural demand estimation, substitution

across brands or sizes is an empirical question. Still, it often requires ex ante modeling

assumptions, either in the random-coefficient structure or the nesting structure. Our method

can be a first step to guiding empirical modeling of micro-founded demand models.

An exception to the above findings is Yoplait large’s own- and cross-price elasticities.

As noted before, the tuning parameter value we arrive at is m = 2, which looks different

from the other three. For this product, we also observe wider confidence intervals and an

unexpected substitution pattern. Nevertheless, we stick to the same empirical procedure for

all four brand-size choices. One possible explanation is that Yoplait has a separate premium

product line, which offers more package sizes and does not have much price variation. We

provide more details in the tables in Appendix C.

Optimal pricing. We now revisit the managerial decision problem proposed in section 3.

When one firm knows marginal costs and would like to compute the optimal static prices,

it can solve for them using the standard first-order conditions in Equation (2). Estimating

the point own- and cross-elasticities allows the firm to solve (2) for optimal pricing without

structural assumptions about consumer demand.

We now demonstrate this point by solving for Equation (2) for Dannon’s and Yoplait’s
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Figure 4: The estimated own-price elasticities of yogurt

(a) Dannon small (b) Yoplait small

(c) Dannon large (d) Yoplait large

Note: This figure provides the own-price elasticity estimates of Dannon small, Dannon large, Yoplait small,
and Yoplait large. These elasticities are evaluated at 30 price levels from 0.7 to 1 dollar per 8 oz. For
cross-price elasticities, see Table 6 and Appendix Figure A1.

Table 6: Price elasticities at representative points

Danon small Yoplait small Dannon large Yoplait large

(A) Dannon small ($ 0.85) -3.044 1.728 0.218 0.726
(B) Yoplait small ($ 0.85) 4.157 -4.722 0.896 0.827
(C) Dannon large ($ 0.85) 0.137 0.450 -1.517 0.900
(D) Yoplait large ($ 0.85) 1.505 -0.556 0.289 -1.528

Note: This table presents the price elasticity estimates when the A (B, C, D) product is priced at $0.85 per
8 oz and all the other products at their median price levels.
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Table 7: Pricing

Danon small Bootstrap S.E. Yoplait small Bootstrap S.E.

Competitive case 0.606 0.013 0.706 0.016
Monopolistic case 0.428 0.090 0.802 0.045

Note: Bootstrap standard errors are obtained from 10 resamplings. The marginal costs are set to be $0.30
for Dannon small and $0.33 for Yoplait small.

small-sized products.13 We consider two cases. The first case focuses on the current market

structure, where Dannon and Yoplait optimize their profits from the small-sized yogurt and

each competes with the other firm. The equilibrium price vector is a Nash equilibrium

where each price is optimal given the other firm’s optimal price. The second case is that a

monopolist owns Dannon’s and Yoplait’s small-size yogurt and maximizes joint profits. The

reader could view the second case as a merger simulation. In both cases, we assume costs

are $0.30 for Dannon small and $0.33 for Yoplait small.14

In both cases, we reach equilibrium prices by repeatedly iterating on the set of first-order

conditions. At an arbitrary starting price vector, we estimate the point own- and cross-price

elasticities once and use these elasticities to solve for the left-hand side of Equation (2). This

step gives us a vector of prices we should visit next. At this new price vector, we estimate

the elasticities again and arrive at a new vector of prices. We repeat these steps until the

price vector is stable. In this sense, we estimate demand “locally,” only at the points we

visit when searching for the optimal prices.

Table 7 presents the implied optimal prices and the bootstrap standard errors. The

optimal prices are intuitive: Yoplait faces a less elastic demand and has a higher equilibrium

markup ($0.38) than Dannon ($0.31). Yoplait’s higher markups are consistent with the

observation that, in the data, Yoplait’s products have higher average prices. In addition, if

the two firms were to merge into a monopolist firm, the monopolist would set a lower price

for Dannon and a higher price for Yoplait, effectively distancing its vertical product line and

serving more customers.

We have demonstrated that our method can recover reasonable yet rich price elasticity

patterns. One can estimate the price-elasticity profile “globally” to test a theory or to

13We focus on the small package size because, as we pointed out, Yoplait large’s small tuning parameters
lead to estimates that are difficult to interpret.

14We use a higher marginal cost for Yoplait small because it has higher observed prices. The reader can
use different marginal costs in this simulation.
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inform modeling choices. We have also demonstrated that a firm can use our estimator

“locally” to compute optimal prices. In this case, one evaluates point-elasticities only as

needed, without having to estimate the entire demand function. A similar use-case is to

evaluate a counterfactual ownership change, under the assumption that the demand function

is stable and the supply-side counterfactual only changes how the firm internalizes cross-price

elasticities.

7 Conclusion

This paper proposes a scalable approach to estimating price elasticities nonparametrically.

We cast the price-elasticity estimation exercise in a nonparametric control function frame-

work, apply the bagged nearest neighbors estimator to this framework, and demonstrate

the estimator’s theoretical, empirical, and computational performance. We showcase how

this estimator can be applied to learn the shape of a demand function, find optimal prices,

and evaluate a counterfactual ownership change. We believe that our flexible price elasticity

estimator can be instrumental in a wide range of marketing and economic applications.
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A Technical details and proof of theorems

A.1 Derivation of Equation 5

Thanks to the regularity conditions in Assumption 3 and 4, we take partial derivatives on

both sides of Equation 4 with respect to pt and zt. By the chain rule of calculus, we have

∂pt
hj(pt,xt, z̃t)︸ ︷︷ ︸

J×1

= ∂pt
fj(pt,xt)︸ ︷︷ ︸
J×1

+ ∂utλ(ut)︸ ︷︷ ︸
J×1

,

∂z̃thj(pt,xt, z̃t)︸ ︷︷ ︸
dz̃×1

= − ∂̃̃ztg(zt)︸ ︷︷ ︸
dz̃×J

∂ut
λ(ut)︸ ︷︷ ︸
J×1

.

Here ∂pt
hj(pt,xt, z̃t) is the Jacobian matrix of conditional demand function hj with respect

to price vector pt, evaluated at point (pt,xt, z̃t). The other terms are defined in the same

fashion. We explicitly list the dimensions of these Jacobian matrices underneath to avoid

potential confusion on various definitions of the Jacobian matrix.

We can rearrange the above two equations and get

∂z̃tg(zt)︸ ︷︷ ︸
dz̃×J

∂pt
fj(pt,xt)︸ ︷︷ ︸
J×1

= ∂z̃thj(pt,xt, z̃t)︸ ︷︷ ︸
dz̃×1

+ ∂z̃tg(zt)︸ ︷︷ ︸
dz̃×J

∂pt
hj(pt,xt, z̃t)︸ ︷︷ ︸

J×1

,

which gives us a system of dz linear equations in J unknowns, whose solution is to be

discussed in the following two scenarios.

When dz̃ > J , that is, when the number of excluded instrumental variables is larger

than the number of endogenous prices, it is an over-identified system. Since ∂z̃tg(z̃t) has

full column rank, we are able to obtain a minimum distance solution,

∂pt
fj(pt,xt)︸ ︷︷ ︸
J×1

= ∂pt
hj(pt,xt, z̃t)︸ ︷︷ ︸

J×1

+(∂z̃tg(zt)
T︸ ︷︷ ︸

J×dz̃

∂z̃tg(zt)︸ ︷︷ ︸
dz̃×J

)−1 ∂z̃tg(zt)
T︸ ︷︷ ︸

J×dz̃

∂z̃thj(pt,xt, z̃t)︸ ︷︷ ︸
dz̃×1

.

A.2 Derivation of speical cases

Case 1 When there are J endogenous prices, for each of the endogeneous price pi there is

exactly one excluded instrumental variable z̃i, we get
∂fj(pt,xt)

∂p1t
...

∂fj(pt,xt)

∂pJt

 =


∂hj(pt,xt)

∂p1t
...

∂hj(pt,xt)

∂pJt

+


(∂g1(z1t)

∂z̃1t
)−1

. . .

(∂gJ (zJt)
∂z̃Jt

)−1




∂hj(pt,xt)

∂z̃1t
...

∂hj(pt,xt)

∂z̃Jt

 .
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In this special case, it holds that, for i = 1, 2, . . . , J ,

∂fj(pt,xt)

∂pit
= (

∂gi(zit)

∂zit
)−1 ∂hj(pt,xt)

∂z̃it
.

Case 2 When there are one endogenous price pt, for this endogenous price there are

instrumental variables z̃1t and z̃2t, we get

∂fj(pt,xt)

∂pt
=

∂hj(pt,xt)

∂pt
+
(
((∂g(zt)

∂z̃1t
)2 + (∂g(zt)

∂z̃2t
)2)−1

)(
∂g(zt)
∂z̃1t

∂g(zt)
∂z̃2t

)(∂hj(pt,xt)

∂z̃1t
∂hj(pt,xt)

∂z̃2t

)
.

In this special case, the price effect is a weighted average using both instrumental variables.

Case 3 When there are two endogenous prices p1t and p2t, for p1t there are two excluded

instruments z̃1t and z̃2t, for p2t there are one excluded instrument z̃3t, we get

(
∂fj(pt,xt)

∂p1t
∂fj(pt,xt)

∂p2t

)
=

(
∂hj(pt,xt)

∂p1t
∂hj(pt,xt)

∂p2t

)
+

(
((∂g1(z1t,z2t)

∂z̃1t
)2 + (∂g1(z1t,z2t)

∂z̃2t
)2)−1

(∂g2(z3t)
∂z̃3t

)−2

)
(

∂g1(z1t,z2t)
∂z̃1t

∂g1(z1t,z2t)
∂z̃2t

∂g2(z3t)
∂z̃3t

)
∂hj(pt,xt)

∂z̃1t
∂hj(pt,xt)

∂z̃2t
∂hj(pt,xt)

∂z̃3t

 .

In this special case, it holds that,

∂fj(pt,xt)

∂p1t
=

∂hj(pt,xt)

∂p1t
+
(
((∂g1(z1t,z2t)

∂z̃1t
)2 + (∂g1(z1t,z2t)

∂z̃2t
)2)−1

)(
∂g1(z1t,z2t)

∂z̃1t

∂g1(z1t,z2t)
∂z̃2t

)(∂hj(pt,xt)

∂z̃1t
∂hj(pt,xt)

∂z̃2t

)
,

∂fj(pt,xt)

∂p2t
= (

∂g2(z3t)

∂z̃3t
)−1 ∂hj(pt,xt)

∂z̃3t
.

Case 4 When there are two endogenous prices p1t and p2t, for p1t there are one excluded

instruments z̃1t, for p2t there are one excluded instrument z̃2t, for both of them there is a

common excluded instrument z̃3t, we get
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(
∂fj(pt,xt)

∂p1t
∂fj(pt,xt)

∂p2t

)
=

(
∂hj(pt,xt)

∂p1t
∂hj(pt,xt)

∂p2t

)
+

(
(∂g1(z1t,z3t)

∂z̃1t
)2 + (∂g1(z1t,z3t)

∂z̃3t
)2 ∂g1(z1t,z3t)

∂z̃3t

∂g2(z2t,z3t)
∂z̃3t

∂g2(z2t,z3t)
∂z̃3t

∂g1(z1t,z3t)
∂z̃3t

(∂g2(z2t,z3t)
∂z̃2t

)2 + (∂g2(z2t,z3t)
∂z̃3t

)2

)−1

(
∂g1(z1t,z3t)

∂z̃1t

∂g1(z1t,z3t)
∂z̃3t

∂g2(z2t,z3t)
∂z̃2t

∂g2(z2t,z3t)
∂z̃3t

)
∂hj(pt,xt)

∂z̃1t
∂hj(pt,xt)

∂z̃2t
∂hj(pt,xt)

∂z̃3t

 .

A.3 Proof of theorems

In this section, we provide a rigorous representation to our theorems. Without loss of

generality, we are dealing with a nonparametric prediction problem.

yi = µ(wi) + ϵi,

where y is a scalar and w ∈ Rd with d fixed but potentially large.

Assumption A.1. We have an i.i.d. sample, (w1, y1), (w2, y2), . . . , (wn, yn).

Assumption A.2. The density ν(·) of w is bounded away from 0 and ∞, ν(·) and µ(·) are
both twice continuously differentiable with bounded second derivatives in a neighborhood of

w, and y has finite second moment, E y2 < ∞. ϵ is independent of w, has zero mean and

finite variance σ2 > 0.

A.3.1 Proof of Theorem 2

We rephrase Theorem 2 as the following theorem.

Theorem A.1. Given w0 ∈ supp(w), under Assumptions A.1 and A.2,

E τn(m)(w0) = µ(w0) +B(m),

B(m) = Γ(2/d+ 1)
ν(w0) tr(µ

′′(w0)) + 2µ′(w0)
Tν ′(w0)

2 d V
2/d
d ν(w0)1+2/d

m−2/d + o(m−2/d), (8)

where Vd =
πd/2

Γ(1+d/2)
, Γ(·) denotes the Gamma function, ν ′(w0) and µ′(w0) are the first order

gradients at w0 for ν(w) and µ(w), respectively, µ′′(w0) is the Hessian matrix of µ(·) at

w0, and tr(·) gives the trace.
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The proof for the above theorem can be found in Demirkaya et al. (2022). Theorem

A.1 shows that the first-order asymptotic bias of the bagged nearest neighbors is of order

m−2/d. Demirkaya et al. (2022) further give the asymptotic order of the bias term after bias

reduction and, in general, generalize these estimators to two-scale distributional nearest

neighbors (TDNN). In this paper, we follow the convention and keep using the name and

definition of bagged nearest neighbors.

A.3.2 Proof of Theorem 3

We rephrase Theorem 3 as the following theorem.

Theorem A.2. Given w0 ∈ supp(v), under Assumptions A.1 and A.2, and assuming

m→∞ and m
/
n→ 0, then for some positive σn with σ2

n = O(m
n
), as n→∞,

τn(m)(w0)− µ(w0)−B(m)

σn

D−→ N(0, 1). (9)

The proof for the above theorem can be found in Demirkaya et al. (2022). Theorem

A.2 characterizes the asymptotic distribution of the bagged nearest neighbors estimator.

Demirkaya et al. (2022) further shows that asymptotic normality also holds for two-scale

DNN. They also offer an upper bound for the point-wise MSE and carefully examine the

optimality of convergence rate.

A.3.3 Proof of Theorem 4

This appendix shows that the bootstrap can give a valid inference for the bagged nearest

neighbors estimator. We will prove Theorem A.3 from the U-statistics perspective instead

of the L-statistics. Our proof makes use of the Hoeffding decomposition (Hoeffding, 1948)

and the Mallow’s distance or Wasserstein distance (Bickel and Freedman, 1981).

Theorem A.3. Let Gn be the empirical distribution of our sample (yi,wi)
n
i=1. Given

(yi,wi)
n
i=1, let (y

∗
i ,w

∗
i )

n
i=1 be the conditionally independent bootstrap sample with common

distribution Gn. The bagged nearest neighbors estimator defined on this bootstrap sample is

then

τ ∗n(m)(w0) =

(
n

m

)−1 ∑
1≤i1<i2<...<im≤n

y(1)(w0; (y
∗
i1
,w∗

i1
), (y∗i2 ,w

∗
i2
), . . . , (y∗im ,w

∗
im)).
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Given w0 ∈ supp(w) and σn in Theorem A.2, under Assumptions A.1 and A.2, and assum-

ing m→∞ and m
/
n→ 0, then for almost all sample sequences, as n→∞,

τ ∗n(m)(w0)− E∗τ ∗n(m)(w0)

σn

D−→ N(0, 1).

Proof: We first review some results that we will need. Hereafter, we useTi as a shorthand

notation for (wi, yi). From our proof in Theorem 3, we have

� The bagged nearest neighbors estimator can be decomposed,

τn(m)− E τn(m) =
m

n

n∑
i=1

g̃(Ti) + ∆n(m),

where g̃(Ti) = EΦ(T1,T2, . . . ,Tn|Ti) − EΦ(T1,T2, . . . ,Tn), the canonical Hájek

projection of kernel Φ ontoTi. The expectation E is with respect toG, the distribution

of T.

� For some finite positive variance σ2,

σ2
n = var [

m

n

n∑
i=1

g̃(Ti)] =
m2

n(2m− 1)
σ2.

� When m/n→ 0 and n→∞,

(
∆n(m)

σn

)2 → 0. (10)

� By the Lindeberg–Lévy Central Limit Theorem, we can have

m

n

n∑
i=1

g̃(Ti)

σn

D−→ N(0, 1).

Let Gn be the empirical distribution of (T1,T2 . . . ,Tn). Given (T1,T2, . . . ,Tn), let

(T∗
1, . . . ,T

∗
n) be conditionally independent, with common distribution Gn. The bagged

nearest neighbors estimator defined on (T∗
1, . . . ,T

∗
n) is then

τ ∗n(m)(w0) =

(
n

m

)−1 ∑
1≤i1<i2<...<im≤n

Φ(w0;T
∗
i1
,T∗

i2
, . . . ,T∗

im).

Similarly, we can have
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� For the new distribution Gn,

τ ∗n(m)− En τ
∗
n(m) =

m

n

n∑
i=1

g̃(T∗
i ) + ∆∗

n(m),

where the expectation En is with respect to Gn.

� When m/n→ 0 and n→∞, for σ2
n defined in (10),

(
∆∗

n(m)

σn

)2 → 0.

With a bit abuse of notation, let ⇒ denote weak convergence, it can be shown that

L(τ
∗
n(m)− En τ

∗
n(m)

σn

)⇒ L(m
n

n∑
i=1

g̃(T∗
i ,Gn)

σn

),

which comes from the convergence of the remainder term.

To establish Theorem 3, we still need to prove

L(m
n

n∑
i=1

g̃(T∗
i )

σn

)⇒ L(m
n

n∑
i=1

g̃(Ti)

σn

).

We will use the Mallow’s distance introduced in Bickel and Freedman (1981). Before

we proceed, we list some properties of the Mallows distance we will use. Let Mp be the

Mallow’s distance, p ∈ [1,∞) and all distributions have finite p-th moments.

� If F and G are distributions on the real line, then

Mp(F,G) = {
∫ 1

0

|F−1(t)−G−1(t)|pdt}1/p.

� If X1, X2, . . . , Xn are independent observations from a distribution F , and Fn is their

empirical distribution, then almost everywhere,

Mp(Fn, F )→ 0.

� For any scalar a,

Mp(aU, aV ) = |a| ·Mp(U, V ).
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� If the Ui are independent, likewise for Vi, and EUi = EVi, then

M2
2 (

n∑
i=1

Ui,

n∑
i=1

Vi) ≤
n∑

i=1

M2
2 (Ui, Vi).

Now we are ready. Let Z(Ti) = EΦ(T1,T2, . . . ,Tn|Ti), then we have

g̃(Ti) = EΦ(T1,T2, . . . ,Tn|Ti)− EΦ(T1,T2, . . . ,Tn)

= Z(Ti)− EZ(Ti).

First, Gn is the empirical distribution function of G,

M2(T
∗,T)→ 0.

Since Z(·) is continuous and bounded, we further have

M2(
√
mg̃(Ti),

√
mg̃(T∗

i ))→ 0.

By the convolution property of the Mallow’s distance,

M2(
m

n

n∑
i=1

g̃(T∗
i )

σn

,
m

n

n∑
i=1

g̃(Ti)

σn

) ≤ m

nσn

√
nM2(g̃(Ti), g̃(T

∗
i )),

where
√
nM2(g̃(Ti), g̃(T

∗
i )) = O(1) since Z and G are both continuous and bounded.

When m/n→ 0,

M2(
m

n

n∑
i=1

g̃(T∗
i )

σn

,
m

n

n∑
i=1

g̃(Ti)

σn

)→ 0,

which completes our proof of Theorem A.3.

Theorem A.3 is more relevant for our empirical case since this paper needs constructing

confidence intervals using the bootstrap. One immediate implication of Theorem A.3 is

that the bootstrap variance estimator is consistent. If we alter the above proof, uniform

convergence can also be derived by the Berry-Esseen theorem. Interested readers may refer

to Demirkaya et al. (2022) for extensions. These properties hold for TDNN as well.
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B Additional details for Monte Carlo simulations

We now outline the two additional DGPs in our simulation: one where two products can

be complements, and the other where consumers can purchase multiple product varieties in

multiple quantities.

Demand when some products are complements. The random-coefficient logit model

assumes that products are substitutes for each other. In reality, many products or ser-

vices are complements (Smith et al., 2019b; Compiani and Smith, 2021), in which case, the

random-coefficient logit model will not estimate the correct cross elasticities. In addition,

standard parametric aggregate-data demand models do not have a good way to accommo-

date complements. We now examine how our nonparametric demand estimator recovers

own and cross elasticities in markets of substitutes and complements.

We follow Gentzkow (2007) and set up a DGP where some products are substitutes

and others are complements. We assume that when an individual ι consumes product j at

market t, she enjoys an indirect utility

ujt = δ − α pjt + ujt + ϵjt.

where all subscripts ι have been omitted since individuals are also indifferent as in (Gentzkow,

2007). The unobserved disturbance ϵjt follows the Type-1 extreme value distribution and

are independent and identically distributed across products and markets. In addition, there

is an outside option of no purchase with u0t = ϵ0t.

This model allows the existence of a bundle. To be specific, we assume that one unit of

Product 1 and one unit of Product 2 can be purchased as a bundle, and for the purchase of

this bundle, the indirect utility is

ubt = δ − α (p1t + p2t) + γ + u1t + u2t + ϵbt,

where γ is the extra utility when purchasing Product 1 and Product 2 as bundles. Gentzkow

shows that when γ is positive enough, Product 1 and Product 2 can be complements. In

other words, the extra degree of complementarity overcomes the implied substitution from

the logit structure.

Our simulation introduces 20,000 markets with γ set to be constant 4. The bottom panel

of Figure 2 shows our estimated point-wise own and cross-price elasticities, together with
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their closed-form counterparts in the true model. The closed-form derivations of the own

and cross-price elasticities do not enjoy the clean forms as in the multinomial logit model.

They vary across products and depend on the specification of the bundle composition, extra

utility γ, and the preferences.

Demand when consumers can purchase multiple products and units. So far, all

DGPs assume that consumers can only choose one product and purchase exactly one unit.

The multiple discrete choice literature (Hendel, 1999b; Kim et al., 2002; Dubé, 2004; Chan,

2006; Bhat, 2008) has shown that consumers sometimes purchase multiple products and in

different quantities and has demonstrated that such variety/quantity behavior might lead

to a different demand function.

We follow Kim et al. (2002), who model consumers as having decreasing marginal utility

on each product variety and solving an inequality constrained optimization problem when

making product choices. The consumer has a random utility with a translated CES utility

function with product-specific parameters governing marginal utility and satiation. She

maximizes this utility function subject to nonnegative consumption constraints and budget

constraints. As a consequence, variety and quantity are allowed.

In this simulation, we assume consumer ι at market t faces the following problem

max
xι1t,xι2t,xι3t

U(xι1t, xι2t, xι3t) =
3∑

k=1

χk
γk
αk

{(xιkt

γk
+ 1)αk − 1}

s.t. xι1t, xι2t, xι3t ≥ 0,

p1txi1t + p2txi2t + p3txι3t ≤ eι.

where αk, γk, χk are preference parameters for each of the 3 existing products and are as-

sumed to be constant across markets and individuals. eι is individual specific budget, pjt

are price for product j in market t.

Solving the above optimization problem with inequality constraints is computationally

intensive, and the computation burden grows exponentially with the number of products J .

Therefore, in our simulations, we limit J = 3.

C Additional tables and figures for the empirical ap-

plication
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Table A1: Yogurt brand and size

Brand Total sales (units) Package size (pounds) Individual sales Price

Yoplait 626, 760, 636

0.375 490, 723, 711 $1.66
0.25 63, 490, 752 $2.55
1.5 26, 982, 361 $1.73
1.125 23, 543, 991 $2.37
0.6875 11, 123, 974 $2.31
0.5 6, 517, 007 $2.18
3 1, 884, 085 $1.52

Dannon 397, 986, 186

0.375 199, 607, 994 $1.58
0.5 71, 257, 840 $1.40
1 33, 874, 083 $2.24
2 23, 157, 036 $1.41
1.5 14, 539, 104 $1.63

Private label 277, 347, 934
0.5 211, 898, 981 $0.98
0.375 42, 254, 002 $1.13
2 13, 661, 875 $0.97

Note: This table summarizes yogurt sales quantity in popular brands and sizes from our dataset. The sales
quantity are in units, the sizes are in pounds, and the price has been normalized to dollars per pound. Only
most popular brands and sizes have been listed.
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Table A2: Yogurt brand and size

Variables Mean S.D. Min Q1 Median Q3 Max Obs.

Yoplait

small
Price 0.92 0.17 0.10 0.80 0.92 1.05 1.58 156,580
Sales 416.13 272.49 66.00 207.75 346.13 556.88 1343.25 156,580
IV 0.84 0.05 0.72 0.81 0.84 0.87 0.97 156,580

large
Price 0.92 0.12 0.17 0.83 0.92 1.00 1.46 156,580
Sales 89.65 61.50 15.00 43.50 72.00 120.00 301.50 156,580
IV 0.86 0.02 0.75 0.84 0.86 0.88 0.91 156,580

premium Price 0.64∗ 0.08 0.15 0.58 0.63 0.70 0.98 156,580

Dannon

small
Price 0.83 0.18 0.11 0.69 0.80 0.94 1.36 156,580
Sales 216.38 180.58 20.25 83.25 160.50 291.75 915.00 156,580
IV 0.77 0.06 0.58 0.73 0.77 0.81 0.90 156,580

large
Price 0.78 0.11 0.27 0.69 0.77 0.86 1.30 156,580
Sales 131.13 93.37 18.00 62.00 106.00 172.50 502.00 156,580
IV 0.73 0.02 0.64 0.72 0.73 0.74 0.80 156,580

Private label

Price 0.54 0.09 0.18 0.48 0.53 0.60 1.46 156,580

Other controls

Store ACV 0.22 0.09 0.04 0.16 0.20 0.27 1.00 156,580

Chain
Shelf.1 0.25 0.10 0.04 0.15 0.22 0.33 0.49 156,580
Shelf.2 0.31 0.10 0.03 0.25 0.33 0.40 0.63 156,580

Time
Week 0.51 0.29 0.02 0.27 0.52 0.75 1.00 156,580
Year 0.58 0.28 0.17 0.33 0.67 0.83 1.00 156,580

Note: This table summarizes yogurt sales in popular brands and sizes from our dataset. *Prices reported
here are per 8 oz, except that the premium Yoplait price is per 4 oz.
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Figure A1: The estimated own- and cross-price elasticities of yogurt

(a) Dannon small (b) Yoplait small

(c) Dannon large (d) Yoplait large

Note: This figure provides the price elasticity estimates of Dannon small, Dannon large, Yoplait small, and
Yoplait large with respect to the price of Dannon small, Dannon large, Yoplait small, and Yoplait large.
These elasticities are evaluated at 30 price levels from 0.7 to 1 dollar per 8 oz.
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