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Abstract 
 

Policy makers and insurers promote the use of generic drugs because they can deliver 
large savings without sacrificing quality. But these e↵orts meet resistance from the 
public, who perceive generic drugs as inferior substitutes for brand name counterparts. 
Building on literature showing that negative emotions reduce risk-taking, we hypoth- 
esize that “bad medical news” prompts patients to favor brand name drugs as means 
to safeguard their health. Our evidence exploits LDL cholesterol test results, where a 
discontinuity from clinical guidelines allows us to estimate the causal e↵ect of bad med- 
ical news. Using data covering patients’ prescription drug choices across drug classes, 
we find that patients receiving bad medical news become 8% more likely to choose the 
brand name alternative. Our findings are reinforced by a secondary analysis incor- 
porating the similar context of Hemoglobin A1c (blood sugar) testing. We also find 
that bad medical news reduces preferences for generics most strongly among drugs of 
direct clinical relevance for each test, but the e↵ect also manifests among non-clinically 
relevant drugs. 
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INTRODUCTION 
 

The large and increasing healthcare expenditures of developed countries has been a challenge 

for policy makers and the general public. In the U.S., the issue is best reflected by the sizable 

share of GDP spent on healthcare—now close to 20% (Hartman et al. 2022). Critics argue 

that much of these expenditures reflect inefficiencies (Nunn, Parsons, and Shambaugh 2020), 

suggesting that costs could be contained without sacrificing the quality of care received by 

patients. 

Regarding the prescription drug component of these expenditures, policy makers view 

policies fostering the substitution of brand name with generic drugs as options of particular 

interest. In addition to using the same active ingredients and dosages, the FDA certifies that 

generic drugs have the same key pharmacological properties of brand name counterparts 

(within margin). Accordingly, many experts view generics as molecular replicas of brand 

name drugs and, thereby, as delivering the same objective therapeutic value. Given the 

much lower prices of generics, substituting brand name with generic consumption could 

therefore lower expenditures without sacrificing the quality of care received by patients. 

Estimates for the U.S. suggest that these savings could be large—about 10% of prescription 

drug expenditure (US$36 billion a year) if patients always chose the generic option when 

available.1 

Prompted by these facts, public and private insurers have introduced a variety of incen- 

tives (e.g., coupons, free samples) aiming to encourage the use of generics. These e↵orts are 

nevertheless met with resistance from the public, who perceive generics as of inferior quality 

compared to brand name drugs (Dunne and Dunne 2015; Hassali et al. 2009). Prior research 

has rationalized such preferences based on informational gaps, i.e., the fact that patients 

lack information reassuring them of the therapeutic equivalency between the two types of 

drugs. For example, Bronnenberg et al. (2015) find that, compared with the general pub- 

lic, pharmacists—who know more about drugs’ properties—are more likely to prefer generic 



over brand name aspirin, while Carrera and Villas-Boas (2020) and Ching (2010a) provide 

evidence that bridging this informational gap increases generic choice. 

We contribute to this literature by investigating how negative information shocks about 

the patients’ own health—“bad medical news”—impact the relative preferences between 

brand name and generic drugs. We are motivated by a series of findings linking similar 

psychological stimuli with subconscious e↵ects on choice. For example, people make more 

risk-conservative gambling and job-selection decisions when experiencing anxiety (Raghu- 

nathan and Pham 1999). Similarly, decisions become biased towards the low-risk option in 

the presence of worry (Johnson and Tversky 1983), fear (Cohn et al. 2015; Lerner and Keltner 

2000, 2001), trauma (Callen et al. 2014; Cameron and Shah 2015), and weather-induced bad 

mood (Bassi, Colacito, and Fulghieri 2013; Hirshleifer and Shumway 2003; Saunders 1993). 

By raising alarm about their own health condition, bad medical news may infuse some of 

these emotions, prompting patients to take action to safeguard their health, e.g., improv- 

ing their diet or exercising more. Given that brand name drugs are perceived as of higher 

efficacy and safety than generics (thereby implying smaller health risks), such actions may 

also include favoring the brand name alternative whenever confronted with a drug choice. 

Accordingly, we hypothesize that bad medical news may increase patients’ propensities to 

choose brand name drugs over generics. 

Our interest in how bad medical news may impact drug choices is also premised on the 

idea that these e↵ects could operate at a large scale. For example, millions of women test each 

year for genetic markers of breast cancer, where a positive test outcome could act as a bad 

news event. Similarly, given the high prevalence of cardiovascular disease in the developed 

world, tens of millions of adults test regularly for low-density lipoproteins (LDL) cholesterol 

(a.k.a., “bad cholesterol”). For an individual who has routinely tested in “optimal” ranges, a 

“borderline high” result may also deliver bad medical news. In all, given the high prevalence 

of bad medical news shocks arising organically as patients interact with the medical system, 

their total e↵ects could be large. 



Our main analysis focuses on the medical news implied by LDL testing results. Instead 

of inferring the presence of bad medical news from patients’ testing histories (as in the above 

example), we rely on a comparison across patients. We compare patients who receive 129 

and 130 mg/dL LDL results. We choose this narrow window because it marks the frontier 

between “near optimal” and “borderline high” ranges, as defined by clinical guidelines. Com- 

pared with individuals who test 129 mg/dL, those who test 130 mg/dL “cross” the frontier. 

We therefore posit that, compared with the former, the latter patients (130 mg/dL) receive 

a bad news treatment. Crucially, the di↵erences resulting from this comparison can be given 

a causal interpretation because LDL results include a measurement error. Since these errors 

are due to factors such as the extent of fasting prior to the test or the patient’s posture 

while the blood is drawn, they can be deemed as plausibly exogenous. We therefore assume 

that patients are locally randomized between the 129 and 130 mg/dL measurements. This 

assumption is supported by the tight balancing between the two patient populations. We 

make use of the di↵erence-in-di↵erences (DID) approach to estimate the di↵erential e↵ect 

that receiving the LDL results has on the drug choices of treated (130 mg/dL) versus con- 

trol (129 mg/dL) patients. Because the perception that generics are of inferior quality than 

brand name drugs is general (i.e., it applies to all drugs), the bad LDL news may a↵ect 

choice beyond drugs of direct clinical relevance to LDL results. Accordingly, our estimation 

utilizes comprehensive data including all prescription drug choices made by sample patients, 

which cover almost 500 drugs across six drug classes (anti-infectives, cardiovascular, gas- 

trointestinal, etc.). Using a similar DID design, we also investigate whether the bad news 

shock changes the quantity and bundle of drugs used by patients. However, we do not find 

evidence that the bad news shock influences these decisions. 

In our main analysis we estimate the impact of the bad news treatment on the probability 

that a patient chooses the generic over the brand name alternative. Consistent with our 

hypothesis, we find that, relative to control patients, those treated with bad medical news 

reduce their generic choice probability by about 0.01 after the test. The estimate represents 



a 1.3% reduction in the average patient’s propensity to choose the generic option. Given 

that brand name drugs have a smaller share of choices (14%) than generics (86%), this result 

can be equivalently expressed as an 8% increase in the propensity to choose the brand name 

option. Considering the average generic price discount relative to brand name drugs (80- 

85%), this e↵ect implies roughly a 3% increase in total prescription drug expenditures for 

the average patient. 

Encouraged by this finding, we probe the e↵ect by investigating the consequences of vary- 

ing treatment intensity. In a series of analyses, we find that the e↵ect on generic propensity 

changes in a way that is directionally consistent with the change in the intensity of the bad 

news treatment. For example, we find relatively larger e↵ects on generic propensity among 

patients whose LDL test happens around a medical office visit (for whom the test result may 

be more salient) and among healthier patients (who may be more surprised by the bad news). 

Among others, we find evidence of a markedly front-loaded e↵ect, i.e., the e↵ect concentrates 

in the immediate aftermath of the test (90 days). The main mechanism behind this result 

pertains to the adoption of new drugs, i.e., the bad news shock is particularly influential for 

patients who are purchasing a drug for the first time. To investigate the generalizability of 

the e↵ect, we next expand our analysis by incorporating the results of a di↵erent medical 

test, i.e., Hemoglobin A1c (measuring blood sugar levels), where we exploit the 7% threshold 

that diabetic patients use to manage the condition. The results of this analysis are broadly 

supportive of the idea that our main result may generalize outside the context of LDL tests. 

As noted, the perceived quality di↵erences between brand name and generic drugs acts 

as a precondition for the bad news e↵ect on brand/generic choice. The e↵ect’s size should 

therefore increase with the di↵erence in perceived qualities. We examine this implication 

through two additional analyses. We first exploit brand/generic price di↵erences. In a dif- 

ferentiated product market, price di↵erences of two products should be positively correlated 

with their perceived quality di↵erences. Consistent with this idea, we find that the bad news 

e↵ect primarily manifests when the branded option is sufficiently more expensive than the 



generic option. We next leverage findings of prior literature highlighting that patients learn 

drugs’ “true” properties through usage. In the presence of this form of learning, perceived 

quality di↵erences should progressively narrow as patients gain more consumption experi- 

ence. Accordingly, we find that the e↵ect decays with the patient’s cumulative consumption 

experience. 

Our final analysis studies how the bad news e↵ect on generic choice varies between 

di↵erent types of drugs. Our main analysis compares the e↵ects unfolding on clinically 

relevant (CR) drugs (cholesterol drugs for LDL testers, diabetes drugs for A1c testers) against 

those on non-CR drugs (e.g., gastrointestinal drugs). While we expect the e↵ect to operate 

on both types of drugs due to generics being perceived as of inferior quality in general, 

the bad testing results can be particularly alarming for patients su↵ering from a related 

condition. Consistent with this intuition, we find that the bad news e↵ect is significantly 

stronger among CR than among non-CR drugs. We also provide evidence suggesting that 

accounting for consumption experience is important to correctly estimate the e↵ects of bad 

news on generic propensity for CR and non-CR drugs. 

We organize the rest of the article as follows. We start by describing the institutional 

and literature background, and then introduce our dataset and research design. We proceed 

by investigating the potential impacts of bad LDL news on patients’ choices on prescription 

drugs. We then investigate the robustness of our results using bad A1c news. Our last set 

of analyses probes the importance of quality perceptions as a key driver for the documented 

e↵ects. We conclude by discussing implications for practice and future research directions. 

 
INSTITUTIONAL BACKGROUND AND RELATED LITERATURE 

 

Generic Drugs 
 
Pharmaceutical drugs combine active and inactive ingredients. Active ingredients deliver 

the intended pharmacological e↵ects while inactive ingredients enable auxiliary features, 

e.g., coloring and flavoring. Generics have the same active ingredients as their respective 



branded incumbents. Accordingly, public health agencies (e.g., the FDA, Health Canada, 

etc.) view them as providing the same objective quality as brand name drugs. Moreover, 

they do so at much lower costs—on average, at an 80%-85% discount compared to brand 

name equivalents. 

For most drugs, generic entry is limited by patents protecting the use of active ingre- 

dients. Since the Hatch-Waxman Act defined modern entry requirements in 1984, generic 

penetration has increased steadily, from 36% in 1994 to 88% of all prescriptions in 2014 

(IMS Institute for Healthcare Informatics 2015), to 90% in 2019 (Woodcock 2019). This 

trend reflects the continued e↵orts of public and private payers to encourage generic sub- 

stitution (Dunne and Dunne 2015). These e↵orts, which are primarily price-based, include 

tiered copayments (i.e., lower copayments for generic drugs), pay-for-performance schemes 

that target physicians and pharmacists, reference price schemes, as well as the use of pro- 

motional tools such as coupons and free samples. Some insurers have even o↵ered generic 

drugs at no cost to patients (Ching, Granlund, and Sundström 2022; O’Malley et al. 2006). 

Despite these incentives, generic substitution faces some resistance from the public. This 

is mainly due to generics being perceived as of inferior quality compared with brand name 

drugs (Dunne and Dunne 2015; Hassali et al. 2009). These perceptions entail concerns about 

safety and efficacy, both of which associate generics with higher perceived health risks. The 

link between safety concerns and perceived health risks is straightforward: patients worry 

about the possibility of generics producing adverse side e↵ects, e.g., migraine and vomiting. 

In turn, efficacy concerns may fuel perceived health risks by hindering patients’ ability to 

manage the drug’s targeted condition. For example, less e↵ective cholesterol drugs may 

increase the likelihood of future cardiovascular events, while less e↵ective insulin products 

may increase the risk for diabetic seizures. Consistent with this view, Tootelian, Gaedeke, 

and Schlacter (1988) show that patients tend to disproportionally favor brand name drugs 

when they face larger health risks from the targeted condition. Similarly, Ganther and 

Kreling (2000) find that patients demand larger savings to purchase generic prescription 



drugs of higher perceived risk. 

While many of the studies on the preference bias against generics survey perceptions of 

generics in general, others focus on drugs of specific domains, e.g., antipsychotics (Roman 

2009), asthma (Williams and Chrystyn 2007), cardiovascular drugs (Kesselheim et al. 2008). 

These findings converge on the idea that much of the di↵erence in brand/generic quality 

perceptions applies to all generics, i.e., across drug classes. It has also been found that, 

beyond patients, healthcare professionals (providers and pharmacists) can be negatively 

predisposed towards generics (Chua et al. 2010; Hassali et al. 2010). It is possible that 

professionals adopt these predispositions to avoid frictions with patients who may exert 

pressure to receive the brand name option (Chua et al. 2010; Hassali et al. 2010; Williams 

and Chrystyn 2007). 

 
Related Literature 

 
Our main hypothesis builds on empirical findings which link negative emotional experi- 

ences (e.g., fear, worry, anxiety) to less risk-taking (e.g., Johnson and Tversky 1983; Kuhnen 

and Knutson 2011; Lerner and Keltner 2000, 2001). For example, in a lab experiment, John- 

son and Tversky (1983) show that reading a newspaper homicide report designed to induce 

anxiety and worry leads one to have more pessimistic crime rate estimates. Interestingly, 

Johnson and Tversky (1983) find that such pessimistic bias also occurs for risks unrelated to 

the news article, such as the chance of dying in a fire or being a victim of leukemia. Similarly, 

experiencing anxiety has also been found to bias decisions in favor of lower-risk gambling 

and job-selection choices (Raghunathan and Pham 1999), while weather-induced bad mood 

reduces risk-taking in stock-market trading (Bassi, Colacito, and Fulghieri 2013; Hirshleifer 

and Shumway 2003; Saunders 1993). Like the e↵ect of anxiety-provoking homicide reports 

on estimates for unrelated risks, weather-induced bad mood hinders financial risk-taking 

behavior, even though weather contains no information about the economy. Similarly, bad 

LDL news may a↵ect drug choices beyond cardiovascular drugs (e.g., asthma drugs), even 



though cholesterol levels may contain little information about non-cardiovascular health. 

The choice between brand name and generic drugs has also been studied in the marketing 

and economics literatures (reviewed by Ching, Hermosilla, and Liu 2019). Ching (2010a) 

provides evidence of a preference bias against generics in the prescription drug market, 

while Bronnenberg et al. (2015) and Carrera and Villas-Boas (2020) do so for over-the- 

counter (OTC) drug choices. As noted in the introduction, these analyses focus on the 

role of information about generics, i.e., patients lacking information that reassures them of 

the equivalency between brand name and generic drugs. By contrast, we examine how the 

psychological stimulus delivered by bad medical news impacts brand/generic choice, even 

though such news contains no information about products. 

Our work also contributes to a growing literature focusing on behavioral hazard in health- 

care decision making (Baicker, Mullainathan, and Schwartzstein 2015; Handel and Kolstad 

2015; Mullainathan, Schwartzstein, and Congdon 2012). This literature highlights how be- 

havioral biases may lead to treatment choices which do not improve consumer well-being. In 

our context, consumer well-being may be negatively a↵ected through lost monetary savings 

implied by a strengthened preference for brand name drugs. As highlighted by Shrank et al. 

(2006), patients may also experience impoverished health outcomes given that patients who 

use generics are significantly less likely to skip doses. Finally, it is important to di↵eren- 

tiate this paper from prior work investigating the impact of news media coverage on drug 

demand (Ching et al. 2016). Rather than product-specific journalistic news, we consider 

patient-specific medical news. 

 
DATA 

 

We utilize 2011 and 2012 MarketScan data, which track healthcare utilization (i.e., health- 

care expenditures) for individuals living in the United States. Data are compiled from 

de-identified administrative claims, from a large array of employers and health plans, includ- 

ing government and public organizations. By 2012, MarketScan included claims covering 



almost 80 million employees (of up to 65 years of age) and their dependents. 

A distinctive feature of the database is that it links individual records across di↵er- 

ent domains of healthcare in addition to drug utilization. Importantly, we have access to 

MarketScan’s “Lab Files,” which capture laboratory tests ordered in office-based practice 

settings. Our analysis leverages LDL cholesterol test results available from these files. 

 
LDL Testing Results 

 
LDL testing results are expressed in milligrams per deciliter (mg/dL). The distribution 

of all LDL test results observed in full the sample is shown in Figure A.5. The distribution 

has wide dispersion and is smooth around the 130 mg/dL threshold for “borderline high” 

levels, where our analysis takes place. We observe a total of 4,940 test results of 129 or 

130 mg/dL. However, a majority of these results correspond to individuals who test more 

than once in the sample. Because multiple testing blurs our inference, for our analysis we 

primarily focus on the set of 2,282 individuals who have only one test in the data. (Multiple 

testers are analyzed separately.) Individuals in our main sample of single-testers are about 

evenly split between 129 and 130 mg/dL results (respectively, N=1,169 and 1,113). Their 

average age (at testing) is close to 49 years old; about 57% of them are female. 

Although MarketScan data do not record the specific reasons why patients take the LDL 

test, some statistics suggest that a majority of these tests may occur in the context of routine 

checkups. Specifically, claims for outpatient services indicate that about 70% of the tests 

happen within a week of a primary care office visit. Of these visits, over 50% are conducted 

by family practitioners and 20% by internists. Furthermore, the types of medical problems 

informed by these tests (as revealed by diagnostic codes, when available) concentrate on 

problems typically addressed in the context of routine checkups, e.g., general prevention, 

cardiovascular health (see Table A.11). 



Drug Choices 
 

The second pillar for our dataset corresponds to claims for prescription drugs. To simplify 

our description of these data and results, we adopt a few terminology conventions. First, 

we use the terms “transaction,” “purchase,” and “prescription” interchangeably to refer 

to a single drug purchase. Second, we use the term “molecule” to refer to compounds or 

unique combinations of active ingredients, irrespective of branding. For example, we may 

say that the Alprazolam molecule has both brand name (Xanax, Niravam) and generic 

alternatives (generic Alprazolam). This nomenclature is helpful partly because we seek to 

control for unobserved variation at the molecule level, for example, from assortment sizes or 

brand/generic price gaps. Our regressions will include a fixed e↵ect for each molecule. 

Because most health insurance plans do not cover over-the-counter drugs, our data has 

very little coverage among them (< 1%). We remove over-the-counter drugs altogether, 

and are thus left with a sample of prescription drug purchases only. Given our focus on 

brand/generic choice, we restrict our attention to molecules for which there is at least one 

generic and one brand name alternative in the market during the covered period (i.e., “multi- 

source” drugs). 

The resulting sample has claims for 35,080 prescription drug purchases, covering 484 

di↵erent molecules. It is important to emphasize that this set of molecules covers the full 

set of drug needs of patients in our sample, not just those associated with high cholesterol. 

About 62% of individuals have at least one drug purchase. For these, the median number of 

purchases is 15 (IQR = [6,33]). Figures 1a and 1b show the distribution of total purchases 

per individual, respectively for individuals who test 130 and 129 mg/dL. For each type of in- 

dividual, Figures 1c and 1d illustrate the distribution of purchases across the six drug classes 

(categories) listed in the data. Drugs targeting cardiovascular and central nervous system 

conditions command the chart. In line with independent data (IMS Institute for Healthcare 

Informatics 2015), most purchased drugs are generics (86% overall). However, note that 

there is significant generic share variation across drug classes. We will take advantage of this 



Figure 1: Main descriptives of the drug purchases (claims) sample: treated (130 mg/dL) 
vs. control (129 mg/dL) individuals. 

 

(a) Treated individuals (130 mg/dL): number of 
purchases per-individual. 

 

(c) Treated individuals (130 mg/dL): number of 
transactions across drug classes. 

(b) Control individuals (129 mg/dL): number of 
purchases per-individual. 

 

(d) Control individuals (129 mg/dL): number of 
transactions across drug classes. 

 

  
Notes. Data described in these plots are from the 62% of individuals with at least one prescription drug claim in the analytic 
sample. 

 
 
 
variation to investigate the generalizability of our results. As further stressed below, notice 

that the distributions do not significantly di↵er between the two types of individuals. 

 
QUASI-EXPERIMENTAL FRAMEWORK 

 

The Role of LDL in Lipid Management 
 
Cholesterol is a waxy substance that circulates in the blood stream which assists a series 

of biologic processes. Cholesterol can also enter the body through food, particularly meat, 



poultry, and dairy. There are two main kinds of cholesterol: high-density lipoprotein (HDL) 

or “good” cholesterol, and low-density lipoprotein (LDL) or “bad” cholesterol. The latter is 

problematic because it can narrow blood vessels and impede blood circulation. This problem 

can evolve into serious adverse health events, such as strokes. For this reason, LDL tends to 

be the main focus in clinical guidelines for lipid management. 

Clinical guidelines for cholesterol management adopt a series of thresholds for LDL levels. 

In particular, 130 mg/dL marks the frontier between “near or above optimal” and “borderline 

high” level. For example, the formal NCEP ATP-III lipid management guideline prompts 

providers to consider a cholesterol-management treatment for patients who have up to two 

risks factors and receive an LDL test result of 130 mg/dL or higher (National Institutes of 

Health 2001). Similarly, the Cleveland and Mayo Clinics both state in their patient-oriented 

websites that LDL should be “less than 130 mg/dL.” The popular medical website WebMD 

provides similar guidance.2 

 
Local Randomization 

 
We posit that, compared with an infra-marginal patient (129 mg/dL), a patient testing 

at 130 mg/dL is treated to a probabilistic shock of bad news about his/her health condi- 

tion. For these “treated patients” (130 mg/dL), concepts such as “borderline high” and 

“abnormal” may be used with higher probability in connection to their health conditions, as 

compared with “control patients” (129 mg/dL). As a result, treated patients may become 

disproportionally likely to experience the kind of negative emotions which tilt decisions to- 

wards lower-risk alternatives. 

To identify the e↵ect of such bad news on generic choice propensity, we rely on the 

assumption that on which side of the 129/130 mg/dL frontier an individual lands is a random 

event. The main argument supporting this assumption pertains to the relatively large LDL 

measurement error of LDL test results. The medical literature decomposes this error into 

“analytical” and “pre-analytical” variability (Marcovina, Gaur, and Albers 1994). Sources 



of pre-analytical variability include factors such as the individual’s posture during sampling, 

the duration of tourniquet application, how strictly and for how long the individual adhered 

to fasting prior to testing, among various others (Narayanan 1996). In turn, analytical 

variability is determined by how the blood sample is handled and analyzed in the lab, e.g., 

whether and for how long it was frozen prior to analysis. 

Marcovina, Gaur, and Albers (1994) estimate that analytical variability corresponds to 

1.3% of the mean LDL result while pre-analytical variability reaches 9.2%. In the context 

of our sample, these results would indicate that pre-analytical and analytical factors add 

a standard deviation of about 11.5 mg/dL around the “true” LDL level. Based on this 

large variability, we can assume local randomization between individuals testing 129 and 130 

mg/dL. 

Table 1 presents a series of pre-period (i.e., before testing) statistics that show treated and 

control individuals have similar characteristics, operate in similar contexts, have similarly 

generous insurance plans, and behave in similar ways with respect to healthcare utilization. 

Panel A focuses on demographics—age and sex. As shown by the small standardized di↵er- 

ences of Column 3, these variables balance tightly between groups. For example, the average 

age of treated and control patients di↵ers by less than 1% of a standard deviation. This dif- 

ference is much smaller than the usual 25% and 10% standardized di↵erence thresholds used 

in the literature to declare covariate imbalance (Austin 2009). A similar result is observed 

for the female indicator and geographical location categories (regional indicators). 

The next panel considers a series of variables that track the amount of utilization mea- 

sured through the number of filed claims. These variables are: claims for drug purchases 

(total, generic, and cardiovascular-targeted), claims for in-patient admissions and outpatient 

services, and claims for medical tests (all measured as monthly averages). All variables bal- 

ance tightly between groups. In Panel C we consider the number of (other) medical test 

claims filed within the same day as the LDL test under study. The average of around 12 

suggests that patients take several tests at the same time, which would be consistent with 



Table 1: Balancing in the quasi-experimental setup. 
 

(1) (2) (3) 
129mg/dL 130mg/dL Std. Di↵. 

(A) Demographics and location 
Age 48.78 48.83 0.00 

 (10.92) (11.04)  
Sex (fraction female) 0.59 0.54 -0.07 

 
Regional indicators 

(0.49) (0.50)  
0.06 

 
(B) Utilization prior to LDL testing (monthly claims) 

All drugs 0.73 0.72 -0.00 
 (2.02) (1.32)  
Generic drugs 0.54 0.57 0.01 

 (1.61) (1.05)  
Cardiovascular drugs 0.18 0.15 -0.03 

 (0.78) (0.42)  
In-patient admissions 0.01 0.01 -0.04 

 (0.08) (0.05)  
Outpatient services 2.21 1.84 -0.05 

 (7.13) (3.48)  
All medical tests 0.50 0.39 -0.04 

 (2.27) (1.98)  

 
(C) Same-day medical testing 

Same-day medical tests 13.57 11.62 -0.07 
 (20.61) (18.75)  

 
(D) Insurance coverage (implicit) 

Coverage ratio 0.40 0.40 -0.01 
 (0.28) (0.28)  

N 1,169 1,113  

Notes. Parentheses show sample standard deviations. 
 
 
 
routine yearly checkups. The small standardized di↵erence again suggests that treated and 

control individuals have a similar experience during the day the LDL test is taken. 

As mentioned, healthcare insurance plan characteristics are not observed in the data. 

Nevertheless, we can assess the implicit generosity of the available insurance through a “cov- 

erage ratio.” We compute this variable by dividing the patient’s out-of-pocket payments 

(deductible+copay+coinsurance) on the total payments made by the insurer to the phar- 

macy. As shown in Panel D, this ratio averages about 40%, without much of a di↵erence 

between groups. Thus, unobserved insurance variation should not drive our results. 

In Appendix A, we present a series of additional analyses that further document the ex- 



periment’s tight balancing. In particular, we show the absence of systematic treatment/control 

di↵erences in the following respects: (i) medical diagnoses codes associated with the LDL 

test, (ii) kinds and amount of non-LDL testing carried out prior to the LDL test, (iii) quan- 

titative results of non-LDL tests taken prior to the LDL test, and (iv) time when the tests 

(LDL and non-LDL) are administered. We interpret the summation of these results as strong 

evidence in favor of the validity or our research design. 

 
IMPACTS ON DRUG CONSUMPTION BEHAVIOR 

 

Although our main focus is on how bad medical news shocks may impact brand/generic 

choice, it is conceivable that these shocks may have broader impacts on drug consumption. 

For example, the bad news could lead to changes in the bundle of drugs used if patients are 

prompted to adopt preventive treatments or abandon those of relatively strong side e↵ects. 

Similarly, the bad news could introduce changes in the quantity of drugs used, e.g., if patients 

react by improving treatment adherence (e.g., becoming less likely to “miss a pill”). In this 

section we investigate the extent to which these “bundle” and “quantity” e↵ects are observed 

in practice. Results do not support the presence of these e↵ects. 

Quantity e↵ects. To measure changes in the quantity of drugs that patients consume, we 

formulate an outcome variable that tracks the total number of prescription drug purchases 

by patient i during period t. Since most tests in the data (92%) are taken sometime during 

the month, we cannot define time periods as calendar months. (Testing dates are distributed 

relatively uniformly in time. See Figure A.1a.) Accordingly, we define time periods as 30-day 

windows relative to the testing date. For example, for an individual who took the test on 

September 18th of 2012 (9/18/12), this approach would give us t = -1 for 8/20/12- 9/17/12 

(last period before the test), t = 0 for 9/18/12 - 10/17/12 (period starting the day the test 

is taken), t = 1 for 10/18/12 - 11/16/12, and so on, with t = 0 marking the beginning of 

the “post-testing” period. This person enters the final dataset through 23 observations, one 

for each of the fully covered 30-day periods, t = -20 (1/27/11 - 2/25/11), ..., 2 (11/17/12 -  



12/16/12). The full dataset contains 31,567 observations derived from the 1,408 individuals 

associated with at least one drug purchase. On average, patients purchase 1.03 prescriptions 

each time period (SD = 1.71). About 57% of the observations in the panel are zero. Using the 

data formatted in this way, we estimate the following di↵erence-in-di↵erences specification: 

 
PURCHASESit = /3 · Treatedi ⇥ Postt + >i + 6t + ✏it, (1) 

 

where PURCHASESit represents the log of (one plus) the number of drug purchases (i.e., 

claims) within each (i, t) cell. The variable Treatedi is a (time-invariant) indicator for 

whether individual i was treated to the bad medical news, i.e., tested 130 mg/dL instead 

of 129 mg/dL. The variable Postt identifies transactions that occur after the LDL test, i.e., 

Postt = 1[t 2" 0]. The key parameter is /3. An estimate /3̂  > 0 would indicate that the 
 

number of drug purchases exhibits a disproportionate increase for treated individuals com- 

pared to control individuals in the post period. The term ✏ is a disturbance; > and 6 are 

fixed e↵ects (described below). Standard errors are clustered at the individual level using 

the bootstrapping-based method (N=500) of Bertrand, Duflo, and Mullainathan (2004). 

Several aspects of Equation 1 are important to highlight. First, since we cannot qualify 

whether patients directly observe the test result (probabilistic treatment), /3 estimates are 

formally described as intention to treat results (Angrist, Imbens, and Rubin 1996). Second, 

given that the sample only includes individuals testing 129 or 130 mg/dL, the bad news shock 

corresponds to the di↵erential information received by the latter compared to that received 

by the former individuals. That is, our framework does not allow potential treatment e↵ect 

asymmetries rooted on whether the news is positive or negative. In other words, similar 

to interpreting a 130 mg/dL result as bad news relative to a 129 mg/dL result, we could 

interpret the latter as good news relative to the former. 

Also notice that Equation 1 includes narrowly defined fixed e↵ects. The individual- 

level fixed e↵ects > absorb the influence of all time-invariant characteristics of individuals, 



e.g., socioeconomics and demographics, overall health condition and medical history, etc. 

Considering that most people rarely change insurance plans (Handel 2013), > e↵ects also 

help control for unobserved insurance coverage di↵erences. In turn, the time period fixed 

e↵ects 6 control for e↵ects operating in relation to the temporal proximity between the 

drug purchase and the medical test. For example, in anticipation of taking the test (e.g., 

during t = -1), patients could become less likely to “miss a pill,” thereby increasing total 

consumption. Equation 1 would flexibly capture such e↵ects through a larger-than-average 

estimate for 6-1. Similarly, the interaction with the medical system implied by taking the test 

could lead to a temporary increase in drug consumption, e.g., through refilled prescriptions. 

These e↵ects would be captured by 6 parameters for the immediate aftermath of the test, e.g., 

60 and 61. Lastly, note that Equation 1 omits the variables Treated and Post in stand-alone 

form because > and 6 e↵ects make them redundant. 

The estimated coefficient for /3 is presented in Column 1 of Table 2. While the coefficient’s 

positive value associates the bad news shock with an increase in purchased quantities, the 

e↵ect is statistically non-significant at conventional levels. We take this result as evidence 

that bad medical news does not impact the quantity of drugs consumed. 



Table 2: Main results. 
 

(1) (2) (3) (4) (5) (6) 
Consumption behavior Generic choice propensity 

Dependent variable PURCHASES BUNDLE  GENERIC GENERIC GENERIC GENERIC 
Treated⇥Post 0.0171 0.0172  -0.0109⇤ -0.0174⇤⇤   

 
Treated⇥Post⇥(1-HighSpender) 

(0.0176) (0.0159)  (0.0064) (0.0076)  
-0.0265⇤⇤ 

 

      (0.0104)  

Treated⇥Post⇥HighSpender      -0.0085  

 
Treated⇥Post⇥Periods0-2 

     (0.0067)  
-0.0169⇤⇤⇤ 

       (0.0065) 
Treated⇥Post⇥Periods3-6       -0.0061 

       (0.0078) 
Treated⇥Post⇥Periods7+       -0.0079 

       (0.0092) 

Individual FEs X X 
 

X X X X 
Time period FEs X X  X X X X 
Molecule FEs    X X X X 

Sample Full Full 
 

Full With Full Full 
     office visit   

Aggregation Individual/month Transaction 
 

N 31,567 31,567 34,935 20,512 34,935 34,935 
Notes. Linear probability specifications for the probability of choosing the generic option (Equation 2). Parentheses show standard errors. For estimates in Columns 1-2, errors 
are clustered at the individual level; for estimates in Columns 3-6, they are clustered at the individual/molecule level. Legend: ⇤p< 0.1,⇤⇤ p <  0.05,⇤⇤⇤ p<  0.01. 



Bundle e↵ects. Recall that we conceptualize bundle e↵ects as changes in the set of drugs 

used by the patients induced by the bad LDL news. We use the same procedures described 

above to construct a variable that tracks the number of di↵erent molecules purchased by 

each patient during each time period. The resulting variable, BUNDLEit, equals the log 

of (one plus) the number of di↵erent molecules purchased by patient i during time period 

t. On average, individuals purchase 0.96 di↵erent molecules each time period (SD = 1.55). 

Column 2 of Table 2 presents the /3 estimate that we obtain by estimating Equation 1 using 

BUNDLE as dependent variable. We again obtain a positive and statistically non-significant 

estimate, which fails to support the hypothesis that bad news prompts changes in the set of 

drugs consumed. 

 
IMPACTS ON GENERIC CHOICE PROPENSITY 

 

Here we turn to our main objective, which is to estimate the impact of bad LDL news on 

individual’s generic choice propensity, i.e., the probability that an individual chooses the 

generic over brand name option conditional on purchasing a drug. Accordingly, we use the 

data in disaggregated form, i.e., a dataset in which each observation corresponds to a drug 

purchase. Also recall that our dataset includes drug purchases covering patients’ full set 

of drug needs, not just those associated with high cholesterol. Using this full dataset, we 

estimate the following di↵erence-in-di↵erences model which minorly adapts Equation 1: 

 
GENERICijtm = /3 · Treatedi ⇥ Postt + >i + 6t + µm + ✏ijtm (2) 

 
The dependent variable GENERICijtm is an indicator activated if the drug purchased in 

transaction j by individual i during period t was a generic (as opposed to brand name) 

product of molecule m. Given this definition, an estimate /3̂ < 0 would indicate that the 

generic propensity of treated individuals disproportionally falls compared with that of control 

individuals after receiving the test result. We would interpret this result as evidence that 



bad LDL news increases the preference for branded over generic drugs. Like Equation 1, 

Equation 2 includes > and 6 fixed e↵ects, respectively aimed at controlling for time-invariant 

unobservables at the individual level and consumption dynamics around the time of the 

test. In addition to these controls, Equation 2 includes molecule-level fixed e↵ects, µ. We 

include these to help control for variation arising from the number of generic options, average 

brand/generic price gaps, etc. We cluster errors at the individual/molecule level.3 

 
Main E↵ect Estimate 

 
The estimate for the coefficient /3 in Equation 2 is presented in Column 3 of Table 2. The 

estimate is negative and marginally significant (i.e., significant with 90% confidence), sup- 

porting that bad medical news increases the preference for brand name drugs. The estimate 

indicates that, compared with control individuals (129 mg/dL), treated ones (130 mg/dL) 

experience a reduced generic choice probability of an additional -0.0109 after the test. Con- 

sidering the pre-testing generic propensity baseline, this result suggests that the bad news 

shock reduces the frequency of generic choice by about 1.3%. Equivalently, given the rela- 

tively modest share of brand name drugs (14% overall), this point estimate represents an 8% 

increase in the average patient’s propensity to choose the brand name option. In addition to 

the plausibly random treatment assignment, recall that our model controls for unobserved 

individual- and molecule-level variation, as well as for potential anticipatory e↵ects. As such, 

it is difficult to attribute this result to reasons other than the LDL test outcome. We are 

further reassured by two additional sets of results. First, we implement two sets of placebo 

tests (falsified thresholds and testing dates), none of which falsifies the result. Second, a for- 

mal test rejects the presence of confounding pre-trends. These analyses and their respective 

results are presented in Appendix B. 



Treatment Intensity 
 
Encouraged by the previous finding, we now probe the e↵ect in relation to the intensity of 

the treatment experienced by di↵erent individuals. We consider a series of scenarios where 

the intensity of the bad news treatment is implicitly altered. Across these contexts, we find 

directionally consistent changes in the estimated e↵ects on generic propensity. 

Co-occurrent medical appointments. We first consider a scenario where treatment 

intensity may vary based on the salience of test results to patients. In particular, we leverage 

the idea that test results may be more salient for those patients who also have a primary care 

medical appointment (office visit) around the time of the test. As noted before, information 

on the incidence of these visits is available from out-patient services claims, and about 70% 

of the sample register one such visit within a week of the test. The coefficient in Column 

4 of Table 2 results from reproducing our estimation using only the drug claims data for 

this subset of patients. Consistent with increased treatment salience, the -0.0174 estimate 

for /3 is larger in magnitude and more precisely estimated (statistically significant with 95% 

confidence) than its full-sample counterpart. 

Health status. We now investigate how the patient’s health status may moderate the bad 

news e↵ect. Compared with sick patients, healthy patients may be less used to receiving 

information that unveils a health deficiency. Bad LDL news may therefore imply a larger 

shock for healthy than for sick patients. 

The primary empirical hurdle to investigating this hypothesis stems from the fact that 

MarketScan data do not contain variables describing the overall health condition of individ- 

uals. Given this limitation, we use total healthcare expenditures as a proxy for health status, 

under the assumption that higher healthcare expenditures reflect poorer health condition. In 

particular, we create the indicator variable HighSpenderi = 1[ui 2" 0], where ui is the residual 

of an equation that regresses individual i’s logged total healthcare expenditures prior to the 

LDL test (on drugs, in-patient and out-patient services) on a set of demographics and the 

number of in-sample days prior to the test. (Appendix A.4 presents estimation details and 



the distribution of u.) We interpret HighSpender=1 (=0) as reflecting relatively poor (good) 

health status. In Appendix A.1, we present an additional analysis that lends support to this 

interpretation, despite the potential for reverse causality e↵ects. 

We incorporate the HighSpender indicator into Equation 2, as illustrated in Column 

5 of Table 2. Separate bad news e↵ects are estimated for patients in each group (High- 

Spender=0,1). The estimated bad news e↵ect parameter for individuals associated with 

HighSpender=0 (i.e., good health) is -0.0265, which is more than twice of that estimated 

from the full sample, and statistically significant with 95% confidence. For individuals as- 

sociated with HighSpender=1 (i.e., poor health), the parameter is -0.0085, which is much 

smaller as well as statistically non-significant. These results suggest that healthier patients 

are more vulnerable to the bad news e↵ect on brand/generic choice. 

Temporal e↵ects. Research from multiple disciplines converges on the finding that emo- 

tional reactions tend to be short-lived (e.g., Ekman 1999; Card and Dahl 2011; Depetris- 

Chauvin, Durante, and Campante 2020; Verduyn et al. 2009; Verduyn, Van Mechelen, and 

Tuerlinckx 2011). Based on this finding, we conjecture that the bad news treatment may 

have higher intensity in the immediate aftermath of the test, decaying afterwards (i.e., front- 

loading). To investigate this idea, we modify Equation 2 to allow for the estimation of sep- 

arate bad news e↵ects over three post-testing time periods. We select the following cut-o↵s 

(which partition post-testing transactions into approximate terciles): (i) first 90 days after 

testing (periods t=0,1,2), (ii) days 91-210 after testing (periods t=3,..,6), and (iii) day 211 

and after (periods t=7,..). Compared with the full sample estimate of Column 3 (-0.0109), 

the -0.0169 coefficient for the first of these periods (Table 2, Column 6) is larger and more 

precisely estimated (significant with 99% confidence). The signs of the estimates for the 

next two periods continue to be negative, but they are statistically non-significant. These 

results support the idea that the negative emotions infused by the bad news have front-loaded 

e↵ects. 

The e↵ect’s front-loading raises the question about the specific decisions through which 



the e↵ect operates. There are two possible channels. First, the negative e↵ect on generic 

propensity could unfold via switching decisions, i.e., a combination of slowed-down brand- 

to-generic switching and accelerated generic-to-brand switching. However, with less than 

2% of purchases representing switching between brand name and generic alternatives, this 

channel can at most play a minor role in explaining the e↵ect in our data. The second 

channel pertains to brand/generic choice when patients adopt a new molecule, i.e., when 

they purchase it for the first time. It is possible that, in the context of adopting a new 

molecule, bad medical news tilt adopters’ preferences towards the brand name option. In 

Appendix C, we present evidence consistent with this hypothesis. We find that the bad news 

shock increases the propensity to choose the brand name option when patients adopt a new 

molecule. Consistent with the front-loading results above, our estimates show that the e↵ect 

on generic propensity for newly-adopted drugs is also short-lived. 

Multiple testing. We conclude by focusing on the issue of multiple LDL testing. People 

who test for LDL more than once may not only be more driven to thoroughly analyze 

the results, but also be better acquainted with the measurement error. Accordingly, we 

conjecture that multiple testing may be associated with reduced treatment intensity. 

To analyze the problem, we construct a dataset using the information of individuals 

(N=2,341) who record at least one LDL test in addition to that resulting in a frontier 

129/130 mg/dL result. (Recall that these individuals were excluded from our main sample.) 

A series of empirical considerations is required to analyze these data (e.g., individuals vary in 

how many additional testing results they record), so we present our procedures and results in 

Appendix D. Consistent with the bad news e↵ect, we also obtain a negative /3 estimate from 

this sample. However, the estimate is about one third the magnitude of our main estimate in 

Column 1, as well as statistically non-significant. A second analysis on the same data suggests 

that the bad news e↵ect may concentrate on individuals who did not previously receive a 

result of 130 mg/dL or higher. This result coincides with the intuition that individuals who 

have not previously received bad LDL news may be more surprised to receive it. In parallel, 



the 130 mg/dL result may represent good news to those individuals who have previously 

obtained a borderline high (2" 130 mg/dL) result. Given several limitations and lack of 

statistical significance, we interpret these results as merely suggestive for the idea that bad 

LDL news has a marginally decreasing impact on brand/generic choice. 

 
ADDITIONAL EVIDENCE: BAD A1C NEWS 

 

The analysis presented in this section assesses the generalizability of the bad news e↵ect on 

generic propensity. We do so by examining the impact of bad news generated by a di↵erent 

type of medical test, i.e., Hemoglobin A1c tests, which are also contained in MarketScan 

Lab files. These tests measure blood sugar levels and are used for diagnosing and managing 

diabetes. 

 
Hemoglobin A1c Tests 

 
Three shared features with LDL testing make A1c testing a good secondary candidate for 

our analysis. First, like LDL results, A1c results are also expressed on a continuous scale, 

i.e., as the percentage of red blood cells with sugar-coated hemoglobin (typically 5-8%). 

Second, A1c results also include a significant measurement error, around 0.5% (Phillipov 

and Phillips 2001). This error introduces the necessary local randomization around clinical 

thresholds. Third, like LDL tests, A1c tests are common, particularly among people who 

have been diagnosed with diabetes. 

Despite these favorable features, two aspects of A1c testing introduce a measure of ex- 

perimental noise. First, compared with LDL cholesterol, the interpretation guidelines for 

A1c tests are not as strict as those for LDL tests. For example, the American Diabetes As- 

sociation writes “providers might reasonably suggest even lower A1C goals than the general 

goal of <7% [...] conversely, less-stringent A1C goals than the general goal of <7% may be 

appropriate for patients with a history of [...]” (American Diabetes Association 2010). The 

website WebMD, which is highly popular among patients, includes a similar emphasis. This 



aspect suggests that the measurable impacts of bad A1c news on generic propensity may be 

mu✏ed compared with those of bad LDL news. 

Second, A1c results inform two distinct clinical decisions. The 7% threshold referenced 

above is used by diagnosed patients to manage the condition. In addition, two other thresh- 

olds are used for diagnosing the condition, 5.7% and 6.5% (entry to pre-diabetic and dia- 

betic ranges, respectively). Whereas the 7% for diabetes management has been consistently 

adopted by official diabetes management guidelines (e.g., American Diabetes Association 

2010, 2021), there has been an on-going debate about whether the latter two should be 

relied upon for diagnosis.4 Consistent with this scenario, we only detect bad news e↵ect on 

generic choice propensity around the 7% frontier. Estimates obtained using the 5.7% and 

6.5% cut-o↵s are presented in Table A.9. In line with our results for the LDL sample, we 

fail to detect statistically significant impacts on the quantity or bundle of consumed drugs 

(see results in Table A.8). 

 
Analysis 

With these caveats in mind, we incorporate into our analysis the 143,165 drug claims associ- 

ated with the 3,725 patients in the 6.9/7% A1c frontier, with virtually no patient overlap with 

the LDL sample.5 In our first analysis, we estimate Equation 2 using these data only. Con- 

sistent with our results from LDL testers, we also obtain a negative estimate, /3̂ = -0.0049 

(SE=0.0033), which is about half the magnitude of its analog from the LDL analysis, and 

statistically non-significant. This result suggests that the relatively more flexible A1c guide- 

lines may mu✏e the bad news e↵ect on generic propensity. Another possibility stems from 

the fact that, as revealed by total expenditures, A1c testers may be in worse health condition 

than LDL testers in general (see Appendix A.1). Coupled with our results in relation to the 

moderating role of health status, the smaller e↵ect for A1c testers may reflect that these 

patients are more used to receiving bad medical news than LDL testers.6 

We next re-estimate Equation 2 on a dataset that combines the drug purchases of frontier 



LDL (129 vs. 130 mg/dL) and frontier A1c (6.9 vs. 7%) individuals (N=5,131). In this 

“pooled” regression, baseline di↵erences between the two testing contexts are absorbed by 

the individual-level fixed e↵ects included in the model. The resulting estimate, /3̂ = -0.0066 

(SE=0.0029), is statistically significant with 95% confidence, although about half the size 

the estimated baseline e↵ect from the LDL sample. 

To further compare the e↵ects of bad LDL and A1c news on brand/generic choice, we 

analyze the heterogeneity of the bad news e↵ect across molecule classes. In particular, we 

use a slight modification of Equation 2 to estimate bad news e↵ects specific to each of the 

six drug classes listed in Figure 1. Results are summarized by a set of estimates {/3̂ k,test}, 

where test 2 {LDL, A1c}, and k indexes drug classes (anti-infectives, gastrointestinal, etc.). 

(Models are separately estimated using the data of each test. Further estimation details 

are presented in Appendix F.2.) These estimates, which have the same interpretation of 

prior analyses, are presented in Figure 2 along their 95% CIs. To illustrate this graphical 

presentation, consider Gastrointestinal molecules. For this class, we estimate /3̂ Gast,LDL = 

-0.034 (SE=0.011) using data from LDL testers, and then estimate /3̂ Gast,A1c = -0.013 
 

(SE=0.008) using data from A1c testers. Figure 2 represents this result through the hollow 

circled marker in coordinates (/3̂ Gast,A1c, /3̂ Gast,LDL) = (-0.013, -0.034). 

Two findings from Figure 2 support the generalizability of the bad news e↵ect. First, 

most estimates are negative. That is, in both the LDL and A1c samples, estimates are 

directionally consistent with the bad news e↵ect across the six drug classes covered by the 

data. Second, there is a positive correlation of 0.13 across the vector of six class-specific 

point estimates obtained from each test; the correlation increases to 0.82 when we omit the 

outlier drug class (Hormones & Synthetic Substitutes). We interpret this result as evidence 

that the bad news e↵ect may generalize across di↵erent medical tests. 



 
 
 
 
 
 
 

Figure 2: E↵ects of bad LDL and bad A1c news across drug classes. 
 

Notes. The pooled estimate (squared marker) is obtained by estimating a single regression (Equation 2) on the full dataset 
composed of LDL (129/130 mg/dL) and A1c (6.9/7%) testers. (Note that there is a single pooled estimate—its value is 
reproduced in both axes.) Test-specific estimates (full circled marker) are obtained by estimating Equation 2 separately on each 
of the two samples, with LDL testers on the one hand and A1c testers on the other. Test/drug group specific estimates (hollow 
circled markers) are obtained through separate estimations on the samples of LDL and A1c testers, as described in Appendix 
F.2. In all cases, bars represent 95% Confidence Intervals from standard errors clustered at the patient/molecule level. 



THE ROLE OF PERCEIVED QUALITY DIFFERENCES 
 

As we have noted, a precondition for the bad news e↵ect is the presence of perceived quality 

di↵erences between brand name and generic drugs. Here we present two analyses that probe 

this idea. Our first analysis leverages the observation that, in a di↵erentiated product market, 

perceived quality di↵erences between brand name and generic options should be positively 

correlated with their corresponding price di↵erences. Accordingly, we find that the bad 

news e↵ect focuses on molecules where the brand name option is sufficiently more expensive 

than the generic counterpart. Our second analysis leverages a prediction from research on 

consumer learning, namely, that the accumulation of consumption experience helps patients 

grasp a drug’s “true” therapeutic properties. Consistent with this prediction, we find that 

the bad news e↵ect decays with experience, arising only for relatively inexperienced patients.7 

We use these results to inform our final analysis, which characterizes the bad news e↵ect’s 

heterogeneity with respect to molecules that are clinically relevant to each test and those 

which are not. We find that the bad news e↵ect operates on both types of molecules. 

However, the e↵ect is considerably larger on clinically relevant molecules. 

 
Evidence from Pricing Di↵erentials 

 
Given that generics are molecular replicas of their brand name counterparts, the bias against 

generics tends to be rationalized based on their perceived quality di↵erences. Accordingly, we 

should expect a stronger bad news e↵ect when the perceived quality di↵erences are larger. To 

test this implication, the main empirical hurdle is that we do not directly observe perceived 

quality di↵erences. Here we circumvent this challenge by leveraging pricing di↵erentials. 

Our analysis builds on two strands of literature, both of which associate larger brand/generic 

price di↵erences with larger di↵erences in perceived quality. First, in structural models of 

drug choice, consumption utility is increasing in perceived quality and decreasing in price 

(e.g., Ching 2010a; Crawford and Shum 2005; Narayanan and Manchanda 2009). In this 



framework, profit-maximizing firms would charge higher prices for drugs of higher perceived 

quality (Anderson, De Palma, and Thisse 1992; Ching 2010b). Second, considering that 

drugs can be described as experience goods (Berndt 2002), patients may use prices to make 

inferences about quality (e.g., Erdem, Keane, and Sun 2008; Milgrom and Roberts 1986; 

Wathieu and Bertini 2007). Based on these rationales, we posit that if the bad news e↵ect 

stems from generics being perceived as of inferior quality than brand name drugs, then the 

e↵ect should be stronger when the brand name option is relatively more expensive than the 

generic option. 

To implement this test, we take advantage of the widespread brand/generic price di↵er- 

ences observed in the market. For a molecule j, we operationalize the price di↵erential as 
�j = (pBrand - pGen)/pGen. Following the literature cited above, a positive �j would imply 

j j j 
 

that there is a perceived quality gap favoring the branded option. Hence, a near-zero �j 

would suggest that perceived qualities are similar. We should expect the bad news e↵ect to 

be stronger for molecules where � values are larger. 

We construct � di↵erentials leveraging data from Average Wholesale Prices (AWPs), 

which are the equivalent to sticker/list prices in traditional retailing (Alpert, Duggan, and 

Hellerstein 2013; Gencarelli 2002). Details on how we construct pBrand and pGen using AWP j j 
 

data are provided in Appendix G. The resulting distribution showcases wide variation (see 

Figure A.4a), with a median of 55% price di↵erence in favor of brand name drugs. 

In our econometric model, we account for the variation of � through a median split, as 

shown in Table 3. Whereas the two-way interaction Treated⇥Post captures a baseline bad 

news e↵ect that applies to all molecules, the triple interaction Treated⇥Post⇥AboveMedian� 

captures an additional e↵ect which would apply only to molecules for which the price dif- 

ferential is large enough in favor of the brand name option. (The specification is otherwise 

identical to Equation 2.) Columns 1 and 2 of Table 3 show the estimates obtained from 

the LDL and A1c samples, respectively; Column 3 shows the estimates from the pooled 

sample. (Estimation samples are somewhat smaller than in our previous analyses due to 



Table 3: Price as a signal of quality. 
 

 (1) (2) (3) 
LDL A1c Pooled 

Treated⇥Post -0.0081 0.0084⇤ 0.0057 
 (0.0097) (0.0043) (0.0040) 
Treated⇥Post⇥AboveMedian� -0.0055 -0.0281⇤⇤⇤ -0.0254⇤⇤⇤ 

 (0.0100) (0.0045) (0.0040) 

N 33,840 138,245 172,126 
Notes. Linear probability specifications for the probability of choosing the generic option (Equation 2). The pooled sample 
includes individuals from both the LDL and A1c samples. All models include fixed e↵ects for molecules, individuals, and time 
periods. Parentheses show standard errors clustered at the level of patient/molecule pairs. Legend: ⇤p< 0.1,⇤⇤ p< 0.05,⇤⇤⇤ p< 
0.01.. 

 
 
 
missing price information.) Consistent with our prediction, the bad news e↵ect strengthens 

for molecules associated with above-median � values. This strengthening is clearer (and 

statistically significant) in the A1c and pooled samples. Moreover, for these two samples, 

it is possible to conclude that the bad news e↵ect arises primarily for molecules associated 

with above-median � values. 

In Appendix G we present an analog analysis that is based on approximated Out-of- 

Pocket prices instead of AWPs. We obtain consistent results that the bad news e↵ect is 

primarily observed where the brand name alternative is sufficiently more expensive than the 

generic one. 

 
Evidence from Consumption Experience 

 
Several studies document how the accumulation of consumption experience leads to patients 

learning about drugs’ “true” therapeutic properties (e.g., Ching 2010a,b; Crawford and Shum 

2005). Since generic drugs are molecular replicas of brand name counterparts (and hence have 

the same “true” properties), this form of learning should progressively level the perceived 

qualities of brand name and generic drugs. Building on this observation, we hypothesize 

that the bad news e↵ect decays with consumption experience. The analysis presented in this 

section finds support for this hypothesis. The crucial input needed to implement the test 



Table 4: Consumption inexperience scores. 
 

 Mean Std. Dev. 
Cardiovascular 0.45 0.39 
Hormones & Synthetic Substitutes 0.48 0.40 
Central Nervous System 0.53 0.41 
Gastrointestinal 0.54 0.41 
Unclassified 0.61 0.40 
Anti-infectives 0.83 0.30 

Total 0.53 0.41 
Notes. Inexperience scores are computed at the patient/molecule level, as per Equation 3. The scores summarize the amount 
of consumption experience that the patient has with respect to a given molecule, with lower scores reflecting more experience. 
Scores tabulated here are for the sample used to estimate the models of Table 5, which is composed of 2012 purchases by 
patients who tested for LDL or A1c during 2012. 

 
 
 
is a measure of consumption experience. Since we cannot measure consumption experience 

for patients purchasing drugs early in the sample, we reserve the early portion of our data 

to assess patients’ experience levels. Accordingly, we use drug purchase data for 2011 (first 

year of our sample) to compute the experience measure. We then incorporate this measure 

into the sample of 2012 purchases, which we use to estimate the models. To counteract the 

sample size reduction, we rely on the sample that pools the data of LDL and A1c testers for 

estimation.8 

To facilitate the interpretation of our econometric estimates, we formulate a metric of 

inverse experience, or “inexperience.” This metric is defined as: 
 

1 
Inexperienceim = 1 + #  purchases of molecule m by patient i during 2011 2 (0, 1].  (3) 

 
According to this formulation, if patient i did not purchase molecule m during 2011, s/he 

is given the maximum inexperience score of one (i.e., minimum experience). In turn, the 

larger the number of 2011 purchases is, the smaller the inexperience score becomes. The 

score approaches zero as the number of purchases goes to infinity.9 

Table 4 describes the variation of the Inexperience score, presented separately for the six 



molecule classes codified in the data. The Cardiovascular class is associated with the most 

experienced patients, with inexperience scores that average 0.45. As for other classes, these 

scores exhibit a significant amount of within-class variability (SD=0.39). In the other ex- 

treme, the Anti-infectives class has the least experienced patients, with scores averaging 0.83 

(SD=0.30). This comparison between the Cardiovascular and Anti-infectives class is intu- 

itive in that, given that most cardiovascular conditions are chronic, the scope for experience 

accumulation is much larger. By contrast, most conditions treated with anti-infectives are 

acute (i.e., short-lived), thereby providing fewer opportunities for experience accumulation. 

This relationship generalizes to the full sample, where patients purchasing drugs for chronic 

conditions are associated with 0.2 lower inexperience scores than the average other patient 

(p < 0.01). 

Column 4 of Table 5, Panel A, presents estimation results for a model that incorpo- 

rates the inexperience score as a moderator for the bad news e↵ect. In addition to the 

Treated⇥Post interaction, the model includes the triple interaction Treated⇥Post⇥Inexperience, 

and is otherwise identical to Equation 2. As in our previous analyses, the coefficient for 

Treated⇥Post captures a baseline bad news e↵ect operating regardless of consumption ex- 

perience. In turn, the coefficient for Treated⇥Post⇥Inexperience captures an additional bad 

news e↵ect, which operates in direct proportion to inexperience. The coefficient estimate 

for the baseline bad news e↵ect (Treated⇥Post) is positive, although quite small as well as 

statistically non-significant. By contrast, the estimate for the triple interaction parameter is 

negative, marginally significant (90% confidence), and large in magnitude. In Panel A, we 

have also included the bad news e↵ect estimates from previous analyses to highlight that the 

bad news e↵ect becomes contingent on sufficiently high levels of inexperience. Evaluated at 

maximum inexperience, the bad news e↵ect amounts to a 0.0105 reduction of the generic 

choice probability. In addition, given the formulation of the inexperience score (Equation 3), 

Column 4 estimates imply that the bad news e↵ect disappears after 2.7 purchases. All in all, 

we interpret these results as broadly supportive of the idea that, by reducing brand/generic 



di↵erences in perceived quality, consumer learning reduces the scope of operation for the bad 

news e↵ect. 

 
Do Bad News Matter More for Clinically Relevant Drugs? 

 
Recall that we have defined clinically relevant molecules (CRMs) as those targeting the 

medical condition that is managed based on the results of the medical tests considered for 

our analyses. As such, CRMs correspond to cholesterol drugs for LDL testers and to diabetes 

drugs for A1c testers. Non-CRMs correspond to all other molecules covered by the data. 

Here we study how the bad news e↵ect varies between CRMs and non-CRMs. 

In the background section we highlighted two points derived from prior literature which 

rationalize the bad news e↵ect operating on all drugs, i.e., including non-CRMs. The first is 

the observation that generics are perceived as inferior to brand name drugs in general, i.e., 

across the spectrum of all drugs used by patients. Second, emotional stimuli like bad medical 

news appear to function by altering how individuals weigh alternatives rather than what they 

know about them, meaning that the e↵ect does not require choice-relevant information (e.g., 

weather impacts on stock returns). Nevertheless, we may still expect a stronger e↵ect on 

CRMs, e.g., if the bad testing results are particularly alarming for patients su↵ering a related 

condition. 

To implement our analysis, we begin by formally classifying CRMs. We do so by parsing 

through products’ approved usages, as described by their FDA labels. This codification 

reveals that the Cardiovascular and Hormones & Synthetic Substitutes (HSS) classes contain 

many molecules in addition to CRMs. For LDL testers, CRMs (primarily statins) account 

for only about a quarter of purchases in the Cardiovascular class. In turn, for A1c testers, 

CRMs (mainly metformin and related products) represent about three quarters of purchases 

in the HSS class. 

Another important consideration is that, as discussed in the previous subsection, high 

cholesterol and diabetes are chronic conditions and thus generate persistent drug needs. In 



Table 5: Inexperience and class spillover e↵ects. 
 

(1) (2) (3) (4) 
LDL A1c Pooled  

  

 
(A) All molecules 

Treated⇥Post -0.0109⇤ -0.0049 -0.0066⇤⇤ 0.0039 
 
Treated⇥Post⇥Inexperience 

(0.0064) (0.0033) (0.0029) (0.0067) 
-0.0144⇤ 

   (0.0086) 

N 34,935 143,165 178,162 42,012 
 

(B) Clinically relevant molecules (CRMs) 
Treated⇥Post 0.0563 -0.0073 -0.0023 0.0092 

 
Treated⇥Post⇥Inexperience 

(0.039) (0.0057) (0.0059) (0.0231) 
-0.0597⇤⇤ 

   (0.0277) 

N 1,831 24,142 25,973 5,557 
 

(C) Non-CRMs 
Treated⇥Post -0.0148⇤⇤ -0.0043 -0.0076⇤⇤ 0.0066 

 
Treated⇥Post⇥Inexperience 

(0.0060) (0.0039) (0.0033) (0.0069) 
-0.0156⇤ 

   (0.0092) 

N 33,045 118,741 151,847 36,304 

Sample Full Full Full 2012 purchases 
   by 2012 testers 

Notes. Linear probability specifications for the probability of choosing the generic option. Columns 1-3 show results for 
Equation 2; Column 4, for an specification that enriches with Equation 2 with the triple interaction displayed above. The 
Inexperience score used in this triple interaction is computed at the patient/molecule level (Equation 3). This summarizes the 
amount of consumption experience that the patient has with respect to a given molecule, with lower scores reflecting more 
experience. Clinically relevant molecules (CRMs) are molecules targeting cholesterol in the case of LDL testers and molecules 
targeting diabetes in the cases of A1c testers. We estimate the models of Column 4 on the sample of 2012 purchases by 2012 
testers, as described in the text. All models include fixed e↵ects for molecules, individuals, and time periods. Parentheses show 
standard errors clustered at the level of patient/molecule pairs. Legend: ⇤p< 0.1,⇤⇤ p<  0.05,⇤⇤⇤ p<  0.01.. 



other words, patients use these drugs over long periods of time, acquiring high levels of 

consumption experience and knowledge about them compared to drugs used sporadically. 

This element is evidenced in Table 4, where the Cardiovascular and HSS classes are associated 

with the least inexperienced patients across all six drug classes. These statistics suggest that 

accounting for consumption experience may be important to correctly estimate how the bad 

news e↵ect varies between CRMs and non-CRMs. 

In Panel B of Table 5 we present a series of estimates for the bad news e↵ect obtained 

from the sample of CRMs. Estimates in Columns 1-3 show results for our main specification 

(Equation 2), separately estimated on the LDL, A1c, and pooled samples. The estimate 

obtained from the LDL sample (Column 1) is positive, although estimated with significant 

error and ultimately statistically non-significant. This lack of precision may be attributable 

to the small size of the sample available to estimate the e↵ect. On the contrary, from the 

A1c (Column 2) and pooled (Column 3) samples we obtain negative estimates, which align 

with the presence of the bad news e↵ect among CRMs. However, both of these estimates are 

statistically non-significant. Column 4 presents the estimates for the specification that incor- 

porates the experience moderator. The obtained estimates describe a statistically significant 

bad news e↵ect, one that is driven by consumption (in)experience. The estimate indicates 

that, for fully inexperienced patients (no prior purchases), the bad news shock reduces the 

probability of generic choice by about 0.06 (7%). 

We now turn to estimating the bad news e↵ect that operates on non-CRMs. Results are 

presented in Panel C of Table 5. The presence of these e↵ects is supported by the negative 

estimates obtained from the LDL, A1c, and pooled samples (Columns 1-3, respectively), 

of which the former (LDL) and latter (pooled) are statistically significant (with 95% con- 

fidence). From the specification that incorporates experience e↵ects (Column 4), estimates 

again suggest that the bad news e↵ect is driven by the lack of consumption experience. The 

most important aspect of these parameter estimates pertains to their magnitude. Holding 

consumption experience constant, the bad news e↵ect (Column 4) for non-CRMs is about 



one fourth the size of its counterpart for CRMs. This indicates that even though the bad 

news e↵ect seems to operate over non-CRMs, it is considerably smaller than that operating 

on CRMs. 

To conclude, we would like to draw the attention back to Figure 2. Recall that this figure 

provides class-specific estimates for the bad news e↵ect, for each of the six drug classes 

in the data. A key aspect of these estimates is that they do not control for consumption 

experience. As a result of this omission, we estimate relatively bad news e↵ects of relatively 

large magnitude for some non-CRM classes (e.g., Gastrointestinal, Central Nervous System). 

Combined with the results of this section, these estimates illustrate that controlling for 

consumption experience may be important to correctly estimate the bad news e↵ect. 

 
IMPLICATIONS FOR PRACTICE 

 

Our findings have implications for several key stakeholders in the healthcare industry. First, 

health policy makers, generic drug manufacturers, and insurers (public and private) all share 

the common goal of encouraging patients to choose generics over brand name drugs. To de- 

sign policies aimed at achieving this goal, insurers currently rely on two primary toolkits. 

The first corresponds to a set of demographic and socioeconomic predictors of generic-averse 

attitudes, which are leveraged for the targeting of interventions. The second toolkit corre- 

sponds to possible intervention tools, which in practice boils down to a set of price-based 

promotional activities (e.g., discounts, coupons, free samples, etc.). Our analysis delivers 

important new insights to the application of these frameworks. 

Concerning the targeting decision, our findings suggest that relying solely on demographic 

and socioeconomic predictors may lead to neglect of an important observable—the arrival of 

bad medical news. Accordingly, enriching the targeting framework with variables for recency 

with respect to these events could improve the targeting campaigns’ allocative efficiency. 

Our analysis of brand/generic price di↵erentials also raises a potential concern about the 

common use of price-based incentives to encourage generic use. In line with prior literature 



(Dunne et al. 2014; Lambert et al. 1980; Verger et al. 2003), our results are consistent with 

the idea that patients may use prices to draw inferences about brand/generic qualities. If 

this behavior is pervasive in the field (which is not confirmed by our analysis), it would 

introduce a previously unrecognized trade-o↵. Namely, a price incentive that increases the 

generic option’s share-of-wallet appeal (e.g., through a discount) may also deteriorate its 

perceived quality. In such scenario, the optimal design of price-based campaigns would need 

to strike a delicate balance between the direct, short-term share-of-wallet e↵ects and the 

indirect, more slowly-unfolding potential impacts operating through quality inferences. 

For providers and administrators, it may be helpful to consider strategies to neutralize 

the impacts of bad medical news on brand/generic preferences. A first step in this direc- 

tion consists of generating awareness that even routine medical tests can trigger behavioral 

responses such as the one we have documented. Although the medical profession places 

marked emphasis on adequately breaking bad news to patients (Baile et al. 2000; Buckman 

1992; Faulkner 1998), the traditional focus has been on cases related to severe outcomes 

(e.g., death, cancer diagnoses). Expanding this focus to include the much more subtle type 

of medical news that we consider could have a positive impact on patients’ wellbeing as 

well as on the system’s efficiency. A simpler approach would be to remind patients of the 

equivalency of generic drugs following bad medical news, e.g., via text messages after test 

results are shared with the patient (Pop-Eleches et al. 2011). 

Finally, regulators should take note of the implications on brand name direct-to-consumer 

advertising, which routinely encourages patients to get tested for a variety of symptoms. 

Our results suggest that such advice is also consistent with the goal of hindering generic 

adoption. If drug manufacturers understand these mechanics, they may promote medical 

testing above and beyond medically justifiable levels. Such distortion would imply excess 

healthcare spending in terms of both additional testing and forgone savings from generic 

use. 



CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH 
 

To reduce inefficient healthcare spending, the substitution of brand name with generic drugs 

is one of the policies that attracts close attention from both policy makers and insurers. Given 

that generic drugs are molecular replicas of their brand name counterparts, these policies 

could deliver large savings without sacrificing patient health. Nevertheless, these policies 

are met with resistance from the public, who exhibit a preference bias against generics. In 

this article, we contribute to the literature by uncovering a new source of this bias—bad 

medical news. Our evidence supports the idea that patients may become more reluctant 

to use generics when they receive news that highlight a deficiency in their health. Since 

receiving bad medical news is an inherent component of patients’ interaction with the health 

system, the identified e↵ects might operate at a large scale and be responsible for a large 

amount of over-spending. 

One question that remains open from our analysis pertains to attribution: Does the 

bad news e↵ect reflect the patient’s decision or doctor’s decision? When considering this 

question, we first note that our results related to the importance of patients’ consumption 

experience suggests that patients play a role in the bad news e↵ect. However, since several 

prior works find that doctors mediate the brand/generic decision (Hellerstein 1998; Iizuka 

2012), our analysis cannot rule them out, and future research should aim to characterize 

their role. For example, to what extent do doctors acquiesce to patients’ pressure in favor 

of the brand name option? 

Second, although our analysis demonstrates the existence and basic properties of the bad 

news e↵ect, it does not disentangle the specific psychological mechanisms at play. Related 

literature highlights two possible mechanisms: patients could shy away from generics be- 

cause they become more pessimistic about their health status or because they become more 

averse to health risks.10 It is also possible that, rather than become motivated by avoid- 

ing adverse health events, patients may start to aspire to to improve their overall health 



condition. Eliciting the specific channel(s) at play could be helpful to inform the design of 

remedy interventions and guide future literature. Highlighting the difficulties of addressing 

the question based on observational data, Bassi, Colacito, and Fulghieri (2013) propose an 

experimental approach which could also be deployed in the context of the bad news e↵ect. 

It is important to note that, despite the signs of generalizability provided by the consis- 

tency of bad LDL and A1c news’ e↵ects, the treatment e↵ect of bad medical news could vary 

outside these contexts. This is because the LDL and A1c settings have two key commonal- 

ities that may not be shared by other types of medical news: (i) the patient is not directly 

confronted with outcomes of utmost severity (e.g., death, losing a limb), and (ii) one thera- 

peutic alternative (brand name) strictly dominates the other (generic) in terms of perceived 

efficacy and safety. The e↵ects of bad medical news could be qualitatively di↵erent compared 

to our evidence when these conditions are not met. For example, Harmon (2010) describes 

the story of two patients who, after being diagnosed with end-stage skin cancer, made a 

dramatic plea to be treated with an experimental drug of formally unverified properties. 

That is, confronting a highly probable death outcome, and lacking therapeutic alternatives, 

bad medical news could lead to patients choosing options of high associated risk. Exploring 

these treatment e↵ect di↵erences across decision contexts would be an important avenue to 

improve our understanding about the bad medical news e↵ect. 

We conclude by highlighting two limitations of our analysis. First, as noted before, avail- 

able data do not contain variables designed to measure individuals’ overall health status. 

As a result, we have relied on a health status proxy constructed based on total healthcare 

expenditures (see Appendix A.1). Since this proxy could include a reverse causality bias, 

readers should be cautious when interpreting our results. Second, our dataset lacks infor- 

mation about the individuals’ income level or health insurance plan. Although the absence 

of this information does not introduce a bias into our estimates (because of the randomized 

treatment), it prevents us from examining whether the response to the bad news shock could 

vary with income or insurance coverage. 
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Bronnenberg, Bart J., Jean-Pierre Dub é,  Matthew Gentzkow, and Jesse M. Shapiro (2015), “Do 
Pharmacists Buy Bayer? Informed Shoppers and the Brand Premium,” The Quarterly Journal 
of Economics, 130 (4), 1669–1726. 

Buckman, Robert (1992), How to Break Bad News: A Guide for Health Care Professionals. Uni- 
versity of Toronto Press. 

Callen, Michael, Mohammad Isaqzadeh, James D. Long, and Charles Sprenger (2014), “Violence 
and Risk Preference: Experimental Evidence from Afghanistan,” American Economic Review, 
104 (1), 123–48. 

Cameron, Lisa and Manisha Shah (2015), “Risk-Taking Behavior in the Wake of Natural Disasters,” 
Journal of Human Resources, 50 (2), 484–515. 

Card, David and Gordon B. Dahl (2011), “Family Violence and Football: The E↵ect of Unexpected 
Emotional Cues on Violent Behavior,” The Quarterly Journal of Economics, 126 (1), 103–143. 



Carrera, Mariana and Sofia B. Villas-Boas (2020), “Generic Aversion and Observational Learning 
in the Over-The-Counter Drug Market,” CUDARE Working Paper, eScholarship Publishing 
(December 16), https://escholarship.org/uc/item/7ks7s9jf. 

Ching, Andrew T. (2010a), “Consumer Learning and Heterogeneity: Dynamics of Demand for 
Prescription Drugs after Patent Expiration,” International Journal of Industrial Organization, 
28 (6), 619–638. 

Ching, Andrew T. (2010b), “A Dynamic Oligopoly Structural Model for the Prescription Drug 
Market after Patent Expiration,” International Economic Review, 51 (4), 1175–1207. 

Ching, Andrew T., Robert Clark, Ignatius Horstmann, and Hyunwoo Lim (2016), “The E↵ects 
of Publicity on Demand: The Case of Anti-cholesterol Drugs,” Marketing Science, 35 (1), 158–
181. 

Ching, Andrew T., David Granlund, and David Sundström (2022), “Quantifying the Zero-Price 
E↵ect in the Field: Evidence from Swedish Prescription Drug Choices,” Journal of the Asso- 
ciation for Consumer Research, 7 (2), 175–185. 

Ching, Andrew T., Manuel Hermosilla, and Qiang Liu (2019), “Structural Models of the Prescrip- 
tion Drug Market,” Foundations and Trends® in Marketing, 13 (1), 1–76. 

Ching, Andrew T and Hyunwoo Lim (2020), “A structural model of correlated learning and late- 
mover advantages: The case of statins,” Management Science, 66 (3), 1095–1123. 

Chua, Gin Nie, Mohamed Azmi Hassali, Asrul Akmal Shafie, and Ahmed Awaisu (2010), “A Survey 
Exploring Knowledge and Perceptions of General Practitioners Towards the Use of Generic 
Medicines in the Northern State of Malaysia,” Health Policy, 95 (2–3), 229–235. 

Cohn, Alain, Jan Engelmann, Ernst Fehr, and Michel Andr é  Mar échal (2015), “Evidence for Coun- 
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NOTES 
 

1This figure follows the findings of Haas et al. (2005) and Johansen and Richardson (2016), who estimate 
that prescription drug expenditures in the U.S. could fall by 10% in the (partial equilibrium) scenario of full 
generic substitution. 

2For the formal NIH recommendations, see https://www.nhlbi.nih.gov/files/docs/public/heart/ 
chol tlc.pdf. For the Cleveland clinic, Mayo clinic, and WebMD recommendations, respectively see https: 
//my.clevelandclinic.org/health/articles/16866-cholesterol-guidelines--heart-health,   https: 
//www.mayoclinic.org/diseases-conditions/heart-disease/in-depth/heart-disease/art-20049357,   
and https://www.webmd.com/heart-disease/ldl-cholesterol-the-bad-cholesterol. 

3We cluster at this level because individual preferences for generics may vary by molecule, e.g., because 
the patient’s insurance is more generous for some drug classes over others. Also notice that the fixed e↵ects 
A remove individual-level variation. 

4Bloomgarden (2009), who summarizes the debate, suggests that the root cause of the problem is the 
relationship between long-term glycemia and blood sugar, which can systematically di↵er across individuals. 

5Of these 3,725 patients in the A1c frontier, only two are also in the LDL frontier examined in our 
main analyses. Consistent with local randomization, treated and control groups in the A1c sample are well 

balanced (see Table A.10). 
6Based on the evidence of Appendix A.1 (population-level health condition is between that in the LDL 

and A1c samples), we expect the population-level response to bad news to also fall between the responses 
documented for the LDL and A1c samples. 

7Notice the di↵erence between this and our previous analysis on multiple testers (i.e., more than one 
LDL test). Rather than experience derived from taking multiple medical tests, the analysis herein considers 
experience derived from continued drug consumption. 

8For individuals who test during 2011, 2012 purchase data do not include a pre-testing period. Accord- 
ingly, we exclude these individuals from the estimation sample. 

9Measuring consumption experience at the molecule level contrasts with the prior work of Ching (2010a,b) 
and Crawford and Shum (2005), where learning occurs separately for each product. In Appendix E we present 
arguments that reconcile the two approaches. 

10Literature findings are mixed in this regard. For example, while Johnson and Tversky (1983) and 
Hirshleifer and Shumway (2003) favor the probability assessment channel, Bassi, Colacito, and Fulghieri 
(2013) and Kuhnen and Knutson (2011) favor the risk aversion channel. 

https://www.nhlbi.nih.gov/files/docs/public/heart/chol_tlc.pdf
https://www.nhlbi.nih.gov/files/docs/public/heart/chol_tlc.pdf
https://my.clevelandclinic.org/health/articles/16866-cholesterol-guidelines--heart-health
https://my.clevelandclinic.org/health/articles/16866-cholesterol-guidelines--heart-health
https://www.mayoclinic.org/diseases-conditions/heart-disease/in-depth/heart-disease/art-20049357
https://www.mayoclinic.org/diseases-conditions/heart-disease/in-depth/heart-disease/art-20049357
https://www.webmd.com/heart-disease/ldl-cholesterol-the-bad-cholesterol
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A Additional Sample Descriptives And Experimental 
Balancing Checks 

A.1 The Health Condition of Sample Patients Through the Lens 
of Total Healthcare Expenditures 

As noted in the main text, MarketScan data do not contain variables designed to describe the 
health condition of individuals. We will therefore investigate how the health status of sample 
patients compares to that of the broader population using healthcare expenditures as a yardstick. 

Expenditure di↵erences in the raw data. Column 1 of Table A.1 describes the average 
dollar expenditure of individuals in our main sample, i.e., the sample based on frontier LDL 
results used for our main generic propensity analyses. Expenditures are measured as the value of 
services, i.e., the total dollar amount (US$) paid to the service provider (out-of-pocket expenses 
plus amount covered by insurance). Expenditures cover the full 2-year sample (2011 and 2012) 
and are separated by type, i.e., expenditures on drugs, outpatient services, and inpatient services 
(expenditures on medical tests are omitted because they are not reported in the data available 
to us). On average, individuals in our main sample spent $1,844 on drugs, $5,363 on out-patient 
services (e.g., medical visits), and $1,942 on in-patient services (i.e., surgeries). Total average 
expenditure amounted to $9,149 over the full 2-year period. 

Column 2 of Table A.1 reproduces these statistics for individuals in the broad MarketScan 
database, as reflected by a random sample of 5,000 individuals. Compared with individuals in our 
main sample, individuals in this random MarketScan sample spent about $400 more on drugs, 
$2,000 more on out-patient services, and $200 more on in-patient services. In turn, Column 3 
focuses on individuals of the A1c sample (6.9 vs 7%). Compared with individuals in our main 
(LDL) sample (Column 1), individuals in the A1c sample spent about $300 less on drugs, but 
significantly more on out-patient and in-patient services (about $3,000 and $3,500, respectively). 
Demographics. Table A.2 describes the demographic composition of each of the samples. 
Compared with individuals in the LDL sample (57% female, born in 1962 on average), those in the 
random MarketScan sample (Column 2) are about equally likely to be female but are significantly 
younger (by 9 years on average). Individuals in the A1c sample are generally older (compared 
with the LDL sample, by 14 years) and less likely to be female (48% are female). These statistics 
suggest that the demographics are significantly di↵erent across samples. The econometric results 
that follow incorporate these di↵erences as potential determinants of expenditures. 

Econometric results. In Table A.3 we investigate the utilization di↵erences across samples 
using linear regression. As a dependent variable, we consider each individual’s log total expen- 
ditures (sum of expenditures on drugs, out-patient, and in-patient services). As independent 
variables, we include indicators for the LDL and A1c samples, i.e., MarketScan individuals are 
used as the baseline. Column 1 presents the most basic set of results. Given the above definitions, 
the -0.1180 estimate for the LDL indicator suggests that individuals in our main sample spent 
about 12% less than individuals in the random MarketScan sample. Analogously, the 0.2702 
estimate for the A1c indicator suggest that individuals in the A1c sample spent about 27% more 
than those in the random MarketScan sample. 

Column 2 of Table A.3 reproduces the analysis but also controls for available demographic 
characteristics, i.e., sex and year of birth. After controlling for these demographic characteristics, 
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the expenditure di↵erences between patients in the LDL and random MarketScan sample increase 
to about 37%. By contrast, the di↵erences between patients in the A1c and random MarketScan 
sample vanish. Overall, these results suggest that (i) the LDL sample contains individuals that, 
after accounting for sex and age, are healthier compared with those in the random MarketScan 
sample, and (ii) the A1c sample contains individuals that, after accounting for sex and age, have 
about the same expenditure levels as those in the random MarketScan sample. 

Interpretation: does less healthcare expenditure reflect better health? A leading 
interpretation for the first of these results would be that the lower expenditures of individuals in 
the LDL sample reflects their less need for healthcare (compared with individuals in the random 
MarketScan sample), and thereby their better health condition. We will adopt this rationale to 
interpret the above results. That is, we will interpret these results as reflective of the fact that 
individuals in our main sample (LDL) exhibit on average better health condition than those in 
the random MarketScan sample. 

Nevertheless, it is important to highlight that this interpretation (i.e., less healthcare con- 
sumption signals better health) is subject to an important reverse causality caveat given that 
some healthcare consumption may reflect e↵orts to preserve health. In other words, it is possible 
that some of the additional expenditure by individuals in the random MarketScan sample (com- 
pared with those in the LDL sample) reflects their preventive e↵orts, and thereby their better 
health condition. 

Having noted on this possibility, we think that the reverse causality e↵ect that it alludes to is 
not of first order importance in our data. Our argument is based on the following observations. 
If present, we expect preventive healthcare expenditure to primarily occur within the context 
of out-patient services (e.g., preventive consultations). Patients are often able to book these 
services on their own, without medical justification. By contrast, in-patient admissions usually 
occur in the context of surgery or emergency room visits, for which the medical need is often well 
justified. Based on these observations, we may test for the importance of preventive healthcare 
utilization by studying the substitutability of these two types of expenditures. In particular, 
if preventive healthcare utilization drove healthcare expenditures in our data, we would expect 
a negative correlation between the expenditures on out-patient and in-patient services. That 
is, we would expect to see that individuals who utilize more (prevention-oriented) out-patient 
services have lesser need for and therefore lower utilization of in-patient services. Contrary to this 
implication, we find that the two types of expenditures have a positive and statistically significant 
correlation (⇢ = 0.3316,p < 0.01). This result is ratified by a patient-level regression of logged 
out-patient expenditures on logged in-patient expenditures (plus demographic controls), which 
delivers a 0.3064 (p < 0.013) elasticity of out-patient expenditures to in-patient expenditures. 
We conclude that, although preventive healthcare utilization is likely to be present in our data, 
it is unlikely to drive overall spending. 

How representative of the broad U.S. population is the MarketScan sample? Thus 
far, our analysis has not addressed how representative the random MarketScan sample is of the 
broader United States (U.S.) population. We now turn to examining this question. 

Addressing this question is possible because MarketScan data include population weights, 
which indicate how representative of the overall U.S. population each individual in the sample is. 
Specifically, each individual i in the sample is associated with a number wi 2 0, which corresponds 
to the estimated number of U.S. residents that are represented by individual i in the data. Using 
these values, we first computed a weighted average of expenditures in the random MarketScan 
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P 
X   wi  

sample,  
i i0 

· TotalExpendituresi. This calculation yielded $10,644, which di↵ers by 
wi0 

less than 2% compared with its non-weighted counterpart of $10,855 (see Table A.1). We next 
investigated whether there exists a correlation between an individual’s (logged) total expenditures 
and his/her representative weight. We obtained a small correlation between the two variables, 
⇢ = -0.0101(p = 0.4737), which suggests that expenditures and national representativeness are 
largely statistically independent. Combined, these results would suggest that our conclusions 
would not change by a lot if instead of considering a random sample from the MarketScan 
population we used a random sample from the broad U.S. population. 

 

Table A.1: Healthcare utilization in each sample (US$). 
 

 
Type of 

(1) (2) 
Sample 

(3) 

utilization LDL MarketScan A1c 
Drug 1,844 2,232 1,569 
Outpatient 5,363 6,410 7,462 
Inpatient 1,942 2,109 5,402 
Total 9,149 10,855 14,838 

Notes. Figures correspond to the average total expenditures across individuals included 
in each sample. Expenditures are measured as the value of services (total amount paid to 
the provider). Column 2 corresponds to a random sample of 5,000 individuals from the 
broad MarketScan data. 

 
 

Table A.2: Demographics in each sample. 
 

 
Type of 

(1) (2) 
Sample 

(3) 

claim LDL MarketScan A1c 
Share female 0.57 0.55 0.48 
Birth year 1962 1971 1958 

Notes. Column 2 corresponds to a random sample of 5,000 individuals from the broad 
MarketScan data. 
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Table A.3: Utilization di↵erences across samples: LDL and A1C samples compared to the 
random MarketScan sample (regression baselines). 

 
 (1) (2) 
LDL -0.1180⇤⇤⇤ -0.3673⇤⇤⇤ 

 (0.0427) (0.0437) 
A1c 0.2702⇤⇤ -0.0193 

 (0.0347) (0.0366) 

Fixed e↵ects   

Female  X 
Year of birth  X 

N 16,167 16,167 
Notes. Parentheses show standard errors. Legend: ⇤p < 0.1,⇤⇤ p < 0.05,⇤⇤⇤ p < 0.01.. 
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A.2 Amount, nature, and results of non-LDL testing 

Panel B of Table 1 showed that treated and control individuals balance tightly in terms of 
healthcare utilization, as measured by di↵erent types of average monthly claims. In this section 
we complement those results through a fine-grained analysis of the amount, nature, and results 
of non-LDL testing carried out prior to the studied LDL results. 

We begin our analysis focusing on the amount of testing. We construct the variable NumberNonLDLTestsij 
as the count of claims for non-LDL test j filed by individual i prior to his/her LDL test. The total 
count of such tests is 40,815. The index j for test type corresponds to the di↵erent entries in the 
“Logical Observation Identifiers Names and Codes” system (LOINC, see https://loinc.org/), 
which has about 700 di↵erent entries in our data. To examine whether there is a systematic 
treatment/control di↵erence in the amount of testing, we estimate: 

NumberNonLDLTestsij = Poisson(↵ + (3 · Treatedi + >j), 
 

where >j is a fixed e↵ect for each type of test. This fixed e↵ect helps to account for the fact that 
some tests (such as LDL) are more common than others. The key coefficient is (3. We obtain an 
estimate of (3̂  = 0.034, although with a large standard error (0.371) which renders the estimate 
non-significant at all standard levels of statistical confidence (p=0.926). Thus, there does not 
appear to exist a significant di↵erence in the amount and nature of testing carried out by treated 
and control individuals. 

Next, we evaluate whether there exists a systematic di↵erence in the results obtained by 
each group of individuals. Here it is important to note that the results of di↵erent medical tests 
are expressed in di↵erent units. For example, whereas LDL results are expressed in mg/dL, the 
results for “Sodium [Moles/volume] in Serum or Plasma” tests (LOINC=2951-2) are expressed 
in Millimols per liter (MMOL/L). To account for this feature of the data, our specification also 
includes fixed e↵ects for each test type. The specification is: 

 
LogNonLDLTestResultijt = ↵ + (3 · Treatedi + >j + ✏ijt, 

where LogNonLDLTestResult is the log of one plus the quantitative result obtained by individual 
i from test type j taken at date t. As before, > represents the test specific fixed e↵ects that control 
for the varying scales (units). The term ✏ is an error. Our estimate for the key parameter of 
(3 is (3̂  = 0.0002, with SE=0.008 and p=0.976. That is, this result supports the conclusion that 
treated and control patients obtained the same medical test results prior to the LDL test. We 
interpret this finding as strong evidence that, prior to the LDL result, there were no systematic 
di↵erences in terms of the health condition of treated and control groups. 

 

A.3 Timing of testing 

Figure A.1A describes the timing of LDL tests. Curves plot the cumulative density of individuals 
of each group who had taken the LDL test by each date. For example, both curves indicate that 
by July 2011, about 20% of individuals in each group had been tested. One year later, by July 
2012, close to 80% had been tested. The overall similarity of the two curves indicates that there 
is no systematic di↵erence in terms of when individuals of each group took the test. Figure A.1B 
presents the same analysis for non-LDL tests taken by each individual before their respective 
LDL test. Again in this case, the curves for treated and control group individuals trace each 
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Figure A.1: Timing of medical tests (when they are taken). 

(A) LDL tests. 
 

(B) Other tests. 
 

Notes. Curves show the cumulative distributions of individuals of each group (treated, control) who have taken the LDL 
test (Panel A) and non-LDL test (Panel B) by each date. That is, for example, both curves of Panel A indicate that by 
early July of 2011, about 20% of individuals in each group had taken the LDL test. In both cases (LDL and non-LDL), 
Kolmogorov-Smirnov tests fail to reject the null hypothesis of distribution equality at all conventional statistical significance 
levels. 

 
 
 

other tightly. In both cases (Figure A.1A and Figure A.1B), Kolmogorov-Smirnov tests fail to 
reject the null hypothesis of distribution equality at all conventional statistical significance levels. 
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A.4 The HighSpender indicator 

To construct the HighSpender indicator used in the analysis of Column 5 of Table 2, we first 
estimate the following equation using the full sample of individuals: 

log(1 + TotalExpenditurei) = ✓0 + ✓1 · Femalei + ✓2 · log(Daysi) + Ayob(i) + ui, (A.1) 

where TotalExpenditure is the sum of individual i’s expenditures on drugs, in-patient, and out- 
patient services made prior to taking the LDL test. Female is an indicator for female individuals, 
Days is individual i’s number of in-sample days prior to the LDL test (e.g., given that the earliest 
day in the sample is 1/1/2011, Days = 10 for someone who took the LDL test on 1/10/2011), 
and A are year-of-birth (yob) fixed e↵ects. 

Based on the residuals obtained from this regression, we construct HighSpenderi = 1[ui 2: 0], 
as shown in Figure A.2. 

 
Figure A.2: The HighSpender indicator. 

 

Notes. Plots the errors u obtained from estimating Equation A.1. 
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B Specification checks and supplemental results 
 

B.1 Falsification 

We probe the causal interpretation of our main 129 or 130 mg/dL estimate (Column 1, Panel A, 
Table 2) through two separate placebo tests. First, we reproduce our analysis using falsified clin- 
ical thresholds—120, 125, 135, and 140 mg/dL. Results for each of these scenarios are presented 
in Columns 1-4 of Table A.4A. Estimates are all positive, small (about one order of magnitude 
smaller than our main estimate), and statistically non-significant at conventional levels. Also 
notice that, like the actual 130 mg/dL threshold, the first and last of these falsified thresholds 
(120 and 140) are multiples of 10. Next, we falsify testing dates. After dropping all post-testing 
data, we estimate Equation 2 while assuming that each individual’s LDL testing date occurred T 
months before the actual date. Columns 1-4 of Table A.4B respectively show the obtained results 
for T =3, 6, 9, and 12 months. Again, in addition to the lack of statistical significance, these 
estimates exhibit a much smaller magnitude than the estimate obtained from the un-falsified 
setting. 

Even though the similarity of treated and control individuals leaves little room for confound- 
ing pre-trends, we also conducted a formal assessment of the issue. Concerns that the estimated 
impact of bad LDL news on generic choice propensity is driven by the influence pre-trends are 
not supported. 

 

Table A.4: Falsification tests. 
 

(1) (2) (3) (4) 
(A) Falsified clinical thresholds 

 119 vs 120 mg/dL 124 vs 125 mg/dL 134 vs 135 mg/dL 139 vs 140 mg/dL 
Treated⇥Post 0.004 0.006 0.001 0.001 

 (0.005) (0.006) (0.007) (0.007) 
N 44,200 35,847 30,598 25,361 

(B) Falsified test date 
(only uses pre-test data; below are falsified test dates in months prior to actual test) 

 3 6 9 12 
Treated⇥Post 0.001 0.001 0.003 -0.001 

 (0.007) (0.008) (0.009) (0.010) 
N 16,467 16,467 16,467 16,467 

Notes. Linear probability specifications for the probability of choosing the generic option (Equation 2). All models include 
fixed e↵ects for molecules, individuals, and time periods. Parentheses show standard errors clustered at the level of pa- 
tient/molecule pairs. Legend: ⇤p< 0.1,⇤⇤ p<  0.05,⇤⇤⇤ p <  0.01.. 

 
 
 
 

B.2 Analysis of pre-trends 

We specify a model that addresses the question of whether a generic-choice-reducing trend existed 
among treated individuals prior to the LDL test. Using pre-testing data only, we estimate: 

GENERICijtm = ↵0 · t˜+ ↵1 · Treatedi ⇥ t˜+ >i + bt + µm + ✏ijtm, 
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This is the same specification as in Equation 2, except that 3·Treatedi⇥Postt is replaced by 
↵0 · t̃ + ↵1·Treated⇥t˜. The equation’s main variable is t˜, which corresponds to a measure of 
chronological time. The confounding pre-trend concern would be supported by a ↵̂ 1  < 0 estimate. 
In this case, treated individuals would have already been experiencing (i.e., prior to LDL testing) 
a negative trend of generic choice propensity, above and beyond that experienced by control 
individuals. The estimate of Column 1 in Table 2 could be partly attributable to this trend. 

We estimate the equation for two measures of chronological time, calendar months and time 
periods t (as used in our main analysis). When using calendar months, the suspected trend 
operates relative to the beginning of the sample (January 2011); when using time periods, the 
trend operates with respect to the time of testing. (Recall that time periods were defined based 
on the di↵erence between the day of LDL testing and that of the drug claim. Since the equation 
is estimated on pre-testing data only, all time periods entering the estimation have negative 
values (since they are before the test), approaching zero as time passes. Also note that, since the 
equation includes fixed e↵ects for time periods, when we use this variable to operationalize t˜ we 
cannot estimate ↵0.) In the first case, we estimate ↵̂ 1  = -0.00005 (SE=0.0009); in the second, 
↵̂ 1  = -0.00003 (SE=0.0009). Because the estimates are statistically insignificant in both cases, 
we interpret these results as inconsistent with the presence of confounding pre-trends. 
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C Generic Propensity in the Adoption of New Molecules 
 
 

In this section, we explore a possible mechanism behind the bad news e↵ect on generic propensity, 
namely, an increased preference for brand-name when patients adopt new molecules (i.e., when 
patients first start to consume a new molecule). Our analysis has three components: 

 
• First, we define a sample where we can identify new molecule adoption with reasonable 

confidence. 

• Second, we use Equation A.2 to test whether there exist any treatment/control di↵erences 
in the propensity to adopt new molecules. Since we fail to detect these di↵erences, we can 
treat the adoption of new molecules as exogenous events. (This result is consistent with 
the lack of bad news e↵ects on drug bundles, which we presented in the main text.) 

• Third, we use Equation A.4 to investigate treatment/control di↵erences in brand/generic 
choice for patients who adopt a new molecule. A marginally significant e↵ect (90% con- 
fidence) provides support for our main hypothesis. Consistent our front-loading results, 
this e↵ect concentrates in the first 90 days following the LDL test. 

 
Estimation sample and variable definition. We define the variable Adoptionijtm as an 
indicator for whether transaction j (occurring during a 30-day period t) represents the first time 
that patient i purchases molecule m. Particularly for transactions made early in the sample, 
a natural concern is that some patients may have adopted the molecule before the start of the 
sample. In this case, Adoptionijtm would over-represent adoption. To deal with this problem, 
our approach is to: (i) use 2012 data (second half of our sample) to estimate regressions, and (ii) 
use 2011 data (first half of our sample) to verify prior purchases. Hence, if Adoptionijtm=1, we 
can state that transaction j is the first time patient i purchases molecule m within at least one 
year. Also note that the 2012 transactions used for estimations do not include a “pre” period 
(i.e., period before the LDL test is taken) for individuals who took the medical test during 2011. 
Accordingly, we exclude these individuals from the sample (i.e., those who tested during 2011). 
In the resulting sample, Adoptionijtm=1 for about a quarter of all observations. 

Exogenous adoption. The null e↵ects on consumption bundle (see Section “Impacts on Drug 
Consumption Behavior”) suggest that we can view adoption rates as exogenous. For reassurance, 
we investigate whether bad LDL news may impact the extent of molecule adoption based on the 
estimation sample defined above. We estimate Equation A.2, where the dependent variable is 
Adoption. The specification includes interactions of the treatment indicator with indicators for 
each of the three time periods used for our analysis of temporal e↵ects. For example, an estimate 
,B1 > 0 would indicate that the bad news shock leads to increased adoption rates within the first 
90 days after the bad news are received. Like the equations used in the main text (Equation 1 
and Equation 2), Equation A.2 includes period- and molecule-specific fixed e↵ects (respectively 
6 and µ). However, due to the reduced sample size available to estimate the model, we exclude 
the individual-level fixed e↵ects. Estimation results are shown in Column 1 of Table A.5. The 
estimates of interest are those for coefficients ,B1, ,B2, and ,B3. These estimates are all statistically 
non-significant. Thus, consistent with the absence of bundle e↵ects documented in the main 
text, our analysis in this section suggests that the bad news shock does not induce changes in 
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⇥ 
✓ 3 · Treatedi + ¢3 · Adoptionijtm + /33 · Treatedi ⇥ Adoptionijtm 

molecule adoption rates. 

Adoptionijtm = ↵0 + ↵1 · Treatedi + 6t + µm + /31 · 1[t = 0, 1, 2] ⇥ Treatedi+ 
/32 · 1[t = 3, .., 6] ⇥ Treatedi + /33 · 1[t = 7, ..] ⇥ Treatedi + ✏ijtm. 

 
 

(A.2) 

 
Di↵erential generic propensity e↵ects when molecules are being adopted. We formu- 
late a model to investigate whether the e↵ects of bad news on generic propensity are particularly 
pronounced when a molecule is being adopted (first time a patient purchases the molecule, i.e., 
Adoptionijtm=1) compared to when it has been previously adopted (Adoptionijtm=0). In the 
following regression (which adapts our main generic propensity specification, i.e., Equation 2), 
this e↵ect would be picked up by the coefficient /3: 

GENERICijtm = ↵ · Adoptionijtm + ✓ · Treatedi ⇥ Postt + ¢ · Adoptionijtm ⇥ Postt+ 
/3 · Treatedi ⇥ Postt ⇥ Adoptionijtm + .>i + 6t + µm + ✏ijtm. 

(A.3) 
In this specification, whereas ✓ picks up the general bad news e↵ect on generic propensity that is 
common for newly- and previously-adopted molecules (as in Equation 2), /3 captures additional 
e↵ects for patients who are just adopting the molecule. Also, ↵ picks up any potential di↵erences 
in generic propensity for newly- and previously-adopted molecules (but which are unrelated to 
receiving the bad news), while ¢ captures any additional di↵erences unfolding after the test. 

Since we are interested in unpacking the temporal variation of the bad news e↵ect (i.e., front- 
loading), we estimate a model which allows the e↵ects of interest to vary over time. We employ 
the following specification: 

 
GENERICijtm = ↵0 + ↵1 · Trea⇥tedi + ↵2 · Adoptionijtm+ ⇤ 

1[t = 0, 1, 2] · ⇥✓1 · Treatedi + ¢1 · Adoptionijtm + /31 · Treatedi ⇥ Adoptionijtm ⇤+ 
1[t = 3, .., 6] · ✓2 · Treatedi + ¢2 · Adoptionijtm + /32 · Treatedi ⇥ Adoptionijt⇤m + 

 

+µm + 6t + ✏ijtm. 
(A.4) 

This specification has the same basic structure of Equation A.3, with two di↵erences. First, due to 
the reduced sample size available to estimate the model, we replace individual-level fixed e↵ects 
with a Treatment indicator. The second and most important di↵erence is that Equation A.4 
allows for the estimation of time-di↵erentiated e↵ects. To illustrate this, consider /31, which is 
the coefficient of main interest. Whereas /3 in Equation A.3 captures such potential e↵ect over 
the full post-testing period, /31 in Equation A.4 captures the e↵ect as it may unfold over the 
first 90 days after the LDL test (i.e., periods t = 0, 1, 2). An estimate /3̂1 < 0 would indicate 
that, during the 90 days following the receipt of the bad news, the decline in generic propensity 
provoked by the bad news is particularly strong among purchases representing the adoption of a 
molecule. An estimate /3̂ 2 < 0 would point to the same e↵ect but unfolding over purchases made 
during periods t = 3, .., 6. Similarly, /3̂3 < 0 would point to the same e↵ect over purchases made 
during periods t 2 7. Estimation results are presented in Column 2 of Table A.5. However, of 
the three parameter estimates { /3̂ k  }k=1,2,3, /3̂1 has the largest magnitude and is the only one to 
achieve some statistical significance (significant with 90% confidence). The results suggest that 
the front-loading of bad news e↵ect is due to its temporary impact on patients who newly adopt 
a molecule. 

1[t = 7, ..] 
 

+ 
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Table A.5: Adoption analysis. 
 

 (1) (2) 
Dependent variable Adoption Generic 

 Equation A.2 Equation A.4 
/31 0.0004 -0.0285⇤ 

 (.0208) (0.0165) 
/32 -0.0148 -0.0039 

 (0.0247) (0.0224) 
/33 0.0262 -0.0015 

 (0.0291) (0.0335) 

N 9,553 9,553 
Notes. Parentheses show standard errors clustered at the level of patient/molecule pairs. Legend: ⇤p< 0.1,⇤⇤ p<  0.05,⇤⇤ p<  
0.01.. 
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D The Bad News E↵ect on Multiple Testers 
In this section we consider the impact of bad LDL news on individuals who have more than 
one LDL test in the data (“known multiple testers”). We are particularly interested in studying 
whether having received bad LDL news in the past plays a moderating role for our main e↵ect. 

There are several important points we need to consider in order to implement this analysis. 
First, the majority of multiple LDL testers in the data (N=60,527) do not have a frontier (129 
or 130 mg/dL) result. Given our research design, we retain data for those who have at least 
one such frontier result (N=2,341). Among this population, about 53% of individuals have 2 
LDL tests, 24% have 3, 12% have 4, and the remainder have 5 or more. The main observation 
about this distribution regards the idea that the larger the number of tests an individual has, 
the more likely the individual finds him/herself in a state of high medicalization. This possibility 
opens the door for a variety of confounds. For example, more medicalized patients may be more 
accustomed to receiving and critically interpreting test results and thereby less likely to react to 
bad LDL news as we have defined it. In parallel, more medicalized patients may also be sicker 
and thereby more sensitive to bad medical news, making them more likely to react to the bad 
news. Given that the sign of the combined bias is ambiguous, we retain individuals with exactly 
2 sample LDL tests (N=1,241) as means to minimize the influence of said confounds. Lastly, 
because we are interested in the moderating role of having received bad news in the previous 
test, we keep the subset of these individuals for whom the frontier result was received in the 
second test (N=556). The resulting sample contains 9,289 drug claims. The share of generic is 
very similar to that as in our main sample (84% in this sample versus 86% in the main sample). 

In a first analysis, we use this sample to replicate our main generic propensity analysis 
(based on Equation 2). We estimate /3̂  = -0.003 (SE= 0.013). That is, although the estimate 
is negative (bad news strengthen the preference for brand name drugs), the e↵ect is about one 
third as large as that in the main sample single-testers. In addition, the parameter is statistically 
non-significant. To investigate the role of having received bad news in the past, we next estimate: 

 

GENERICijtm =  /31 · Treatedi ⇥ Postt ⇥ (1 - PriorBadNewsi)+ 
/32 · Treatedi ⇥ Postt ⇥ PriorBadNewsi+ 
>i + 6t + µm + ✏ijtm 

 
(A.5) 

 
This specification has the same basic structure as our main specification of Equation 2. As 

in the previous analysis, Post is based on the timing of the frontier test (which, for all considered 
individuals, is the second one). The variable PriorBadNews is defined as PriorBadNews = 
1[Result of first LDL test is borderline high (i.e., 2: 130)]. This variable is activated for 43% of 
sample individuals (accounting for 42% of transactions). This variable is used as the moderator 
for the main e↵ect. In particular, in the above specification, parameter /31 will capture the e↵ect 
of the (second test’s) bad LDL news for those individuals who did not receive a borderline high 
in their first sample test. In turn, parameter /32 captures the same e↵ect for patients who did 
receive such borderline high result in their first sample LDL test. 

We estimate the following parameters: /3̂1 = -0.013 (SE=0.017) and /3̂2 = 0.007 (SE=0.013). 
That is, the point estimate for patients who did not previously receive bad news is very similar to 
that as in our main analysis of Table 2. However, the large standard error renders the parameter 
statistically non-significant at conventional levels. In turn, the parameter estimate for patients 
who did previously receive bad LDL news, /3̂ 2 ,  has the opposite sign and is much smaller in 
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magnitude (about half) than for patients that did not receive them. The parameter’s standard 
error is disproportionately large. This result is also consistent with the idea that the 130 mg/dL 
result may represent good news to the patients who had previously received bad news. 

We conclude by interpreting this evidence as a mild suggestion that bad LDL news has a 
marginally decreasing impact on generic choice propensity. Given the strong marked sample 
selection and lack of statistical significance, we promote a cautious interpretation of this conclu- 
sion. 
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E Consumption Experience and Generic Propensity 

Pechlivanoglou et al. (2011) finds evidence that consumption experience gradually increases the 
probability of generic adoption. In this section, we investigate the extent to which these patterns 
are observed in our data. Results provide strong evidence in favor of the e↵ect’s presence. 

The analysis is based on the findings of Pechlivanoglou et al. (2011), who show that con- 
sumption experience gradually increases the probability of generic adoption. Consistent with 
this finding, we estimate robust positive correlations between the number of in-sample purchases 
and the probability of generic choice. 

For our analysis, rather than raw generic propensities (probability of generic purchase), we 
consider residual generic propensities. These are computed as the residual from a linear regression 
of the transaction level indicator for generic choice on patient and molecule fixed e↵ects. That is, 
this residual variable measures abnormal generic propensity choice relative to the patient’s and 
molecule’s associated averages. We prefer this residual measure over the raw measure because 
it focuses on within patient/molecule variation that is unfolding over time (as experience is 
accumulated). 

The second element of our analysis is the patient’s number of cumulative molecule purchases. 
If, when making a purchase j for molecule m(j), patient i has previously purchased molecule 
m(j) a total of C times, the patient’s number of cumulative molecule purchases associated with 
transaction j becomes C. 

Results are presented graphically by averaging the residual generic propensity at each num- 
ber of cumulative molecule purchases. Figure A.3A focuses on the sample of LDL testers. The 
upward-sloping blue curve (all transactions) associates the accumulation of consumption expe- 
rience with higher abnormal generic propensity. The e↵ect is subtle: an additional purchase 
is associated with 0.02 higher abnormal generic propensity. The red and green curves repeat 
the analysis for cholesterol- and diabetes-targeted drugs, respectively, which are the focus of our 
analyses in the main text. The green curve repeats the analysis for the sample of 2012 testers, 
which also play an important role for the analysis in the main text. The positive slope is observed 
in all of these three cases. 

Figure A.3B and Figure A.3C repeat the analyses of Figure A.3A using the A1c sample and 
pooled samples instead, respectively. Again here we observe that generic propensity positively 
correlates with the cumulative number of molecule purchases. The e↵ects are more pronounced 
in the LDL sample, particularly for cholesterol-targeted drugs (red curves). 
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Figure A.3: Consumption experience and generic propensity. 

(A) LDL sample. 
 

(B) A1c sample. 
 

(C) Pooled sample (LDL+A1c). 
 

Notes. Curves show the residual propensity of choosing a generic drug, averaged at each consumption instance. Residual 
generic propensities are computed by linearly regressing the generic indicator on patient and molecule fixed e↵ects. 



18  

1 

2 

1 

1 

F Complementary results for the A1C analysis 
 

F.1 Pre-trends and falsification 

Pre-trend and falsification analyses are presented in relation to the estimate of bad A1c news 
on generic propensity, which is represented by the full circle marker in the horizontal axis of 
Figure 2. We first repeat the pre-trends analysis described in subsection B.2. When calendar 
months are used to implement the time trends, our key estimate ↵̂ 1  = 0.00003 (SE= 0.000452). 
When the time trend is implemented via di↵erential months, ↵̂ 1  = -0.000044 (SE= 0.0003). 
Both of these estimates are inconsistent with the presence of confounding pre-trends. Table A.6 
presents placebo tests. They have the same structure as those presented in Table A.4, Panel B. 

 
Table A.6: A1C Falsification tests (falsified test dates). 

 

(1) (2) (3) (4) 
Falsified test date 

(# months prior to actual date) 
3 6 9 12 

Treated⇥Post 0.0038 0.0015 -0.0004 -0.0017 
(0.0039) (0.0039) (0.0049) (0.0056) 

 
N 64,706 64,706 64,706 64,706 

Notes. Linear probability specifications for the probability of choosing the generic option (Equation 2). All models are 
estimated on pre-testing data only, and include fixed e↵ects for molecules, individuals, and time periods. Parentheses show 
standard errors clustered at the level of patient/molecule pairs. Legend: ⇤p< 0.1,⇤⇤ p <  0.05,⇤⇤ p<  0.01.. 

 
 
 
 

F.2 Treatment E↵ect Heterogeneity 

Here we describe the approach employed to estimate the class-specific di↵erences-in-di↵erences 
estimates presented by the hollow circle markers of Figure 2. For each drug group k listed in 
Figure 1, we estimate the following specification: 

 

GENERICijtm =  (3k · Treatedi ⇥ Postt ⇥ 1[Groupj = k]+ 
(3k · Treatedi ⇥ Postt ⇥ (1 - 1[Groupj = k])+ 
>i + 6t + µm + ✏ijtm 

 
(A.6) 

 

The model is otherwise the same as in Equation 2. This approach delivers one estimate (3̂ k  for 
each group k, which reflects the class-specific impacts of bad news on brand/generic preferences. 
The hollow circled markers plotted in Figure 2 correspond to the set of { (3̂ k  } estimates delivered 
by this procedure. The equation is estimated separately on data associated with LDL testing on 
the one hand and A1c testing on the other. 
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p �m =  m m  . (A.7) 

m 

P 

i 

m 

G Perceived Qualities and Pricing: Analytical De- 
tails and Additional Results 

G.1 Additional Details 
 

In this section we describe the construction of the brand/generic price di↵erentials � used for 
the analysis in the main text. For a molecule m, the di↵erential is defined as: 

 pBrand - pGen 

Gen 
m 

The main step involved in computing the set {�m}m2M (where M is the set of molecules covered 
by the data) corresponds to computing the pairs {(pBrand, pGen)}m2M ⌘ {(p0 , p1 )}m2M. 

m m m m 

We describe the involved procedures focusing first on the case of Average Wholesale Prices 
(AWPs). To do this, it is important to first clarify the structure of the data. Although AWPs 
have some temporal variation, they primarily vary across products. A product can be either 
brand name (g = 0) or generic (g = 1), and each product is associated with a unique molecule 
m. 

In this context, let Kmg represent the set of molecule m products of generic type g. A set Kmg 
may (and often does) contain more than one product if there is more than one firm producing 
the molecule, or if the molecule is available in more than one format (due to di↵erent dosages 
and/or delivery routes). For g = 0 (Brand) and 1 (Generic), the price pg entering Equation A.7 
is computed as: 

g = 
X 

k2Kmg 

 
!k p̃k , (A.8) 

where p̃ k  is the median AWP of product k within the full set of drug claims contained in the 2011 
and 2012 MarketScan datasets (about 700 million claims, averaging about 12,000 transactions 
per product). In turn, !k represents a frequency weight for product k computed based on the 
number of associated transactions, with  k2Kmg !k = 1. The resulting distribution of � values 
is shown in Figure A.4A (one value per molecule, truncated at 10). 

 

G.2 Price Di↵erentials Based on Out-of-Pocket Prices 

Out-of-Pocket (OOP) prices refer to the share of a drug’s total cost that is a↵orded by the 
patient. To compute the OOP version of �m, a preliminary step is needed. For each individual 
i we compute the AWP-coverage ratio, ✓ig. This ratio is computed as: 

g 
P

j2Cig (Deductiblej + Copayj + Coinsurancej) 
(A) i = P

j2Cig AWPj 
. (A.9) 

 

In Equation A.9, the set Cig corresponds to all drug claims filed (prior to the LDL/A1c test) by 
individual i for drugs of generic type g. The numerator sums all the OOP components associated 
to a claim j, across all claims in Cig. The denominator, in turn, sums all the AWPs for the same 
set of transactions.  As such, ✓0 represents the average OOP payment (as a share of AWPs) 
that individual i a↵ords when s/he purchases brand name products. (Instead of the average of 

p 
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i 

i m 

ratios, we compute the ratio of sums to avoid instabilities.) Analogously, ✓1 represents the AWP 
fraction a↵orded OOP when the individual purchases generics. Figure A.4B showcases the wide 
coverage variability manifesting via ✓0 and ✓1 parameters (rare cases outside the [0, 1]2 square 
are omitted from the figure). With these values in hand, we compute the OOP version of � as: 

p0 · ✓0 - p1 · ✓1 
�mi =  m i m i  . (A.10) 

 

It is important to note that: 

1 · ✓1 

 

• We have aggregated coverage at the individual/generic type level because the number of 
individuals who consume brand name and generic versions of the same molecule is relatively 
small. 

 
• Many individuals consume only brand name or only generic drugs. For these people, one of 

the two ✓ values is missing and we cannot compute �. For this reason, the OOP analysis 
is subject to a significant sample size loss compared with the AWP analysis. 

 
Estimation results using the partition induced by OOP prices are presented in Table A.7. These 
results o↵er the same qualitative conclusion as its counterpart results based on AWP prices, as 
presented in Table 3 of the main text. 

p 
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Figure A.4: Pricing di↵erences between branded and generic drugs. 

(A) Brand/generic price di↵erentials � based on AWPs. 
 

(B) Scatterplot (✓1, ✓0). 
 

Notes. Procedures used to construct these values are described in Appendix G. 
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Table A.7: Price as a signal of quality (Out-of-Pocket Prices). 
 

(1) (2) (3) 
LDL A1c Pooled 

Treated⇥Post 0.0024 0.0108⇤ 0.0091 
(0.0015) (0.0064) (0.0057) 

Treated⇥Post⇥AboveMedian6 -0.0436⇤⇤ -0.0223⇤⇤⇤ -0.0240⇤⇤⇤ 
(0.0188) (0.0067) (0.0062) 

 
N 13,061 72,810 85,903 

Notes. Linear probability specifications for the probability of choosing the generic option (Equation 2). The pooled sample 
includes individuals from both the LDL and A1c sample. All models include fixed e↵ects for molecules, individuals, and 
the month di↵erence between the test date and drug claim. Parentheses show standard errors clustered at the level of 
patient/molecule pairs. Legend: ⇤p< 0.1,⇤⇤ p < 0.05,⇤⇤⇤ p<  0.01.. 
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H Supplemental Figures and Tables 
 

Figure A.5: Distribution of LDL results contained in the 2011-2012 MarketScan data. 
 

Notes. The vertical dotted line marks the frontier between “acceptable” and “borderline high” LDL measurements. Results 
are expressed in mg/dL, corresponding to milligrams per deciliter. 
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Table A.8: Quantity and Bundle e↵ects in the A1c sample. 
 
 
 
 
 
 
 
 
 

Aggregation Individual/month 
 

N 83,448 83,448 
Notes. Log linear estimates based on Equation 1 using the sample of A1c testers. Standard errors (shown in parentheses) 
are clustered at the individual level. Legend: ⇤p< 0.1,⇤⇤ p < 0.05,⇤⇤⇤ p< 0.01.. 

 
 
 
 
 
 
 
 
 
 
 
 

Table A.9: Bad A1c News: All Clinical Thresholds. 
 

(1) (2) (3) 
Diagnosing Diabetes Managing Diabetes 

 5.6 vs 5.7% 6.4 vs 6.5% 6.9 vs. 7.0% 
Treated⇥Post -0.0004 0.0017 -0.0049 

 (0.0013) (0.0025) (0.0063) 

N 1,186,264 269,153 143,282 
Notes. Linear probability specifications for the probability of choosing the generic option (Equation 2). All models include 
fixed e↵ects for molecules, individuals, and the month di↵erence between the test date and drug claim. Parentheses show 
standard errors clustered at the level of patient/molecule pairs. Legend: ⇤p< 0.1,⇤⇤ p < 0.05,⇤⇤ p< 0.01.. 

 (1) (2) 
Dependent variable CLAIMS BUNDLE 
Treated⇥Post -0.0011 -0.0003 

 (0.0159) (0.0190) 

Individual FEs X X 
Time period FEs X X 

Sample Full Full 
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Table A.10: Bad A1c News: Balancing (6.9 vs 7.0%). 
 

(1) (2) (3) 
6.9% 7.0% Std. Di↵. 

(A) Demographics and location 
Age 53.03 52.56 -0.04 

 (9.36) (9.31)  
Sex (fraction female) 0.48 0.47 -0.01 

 (0.50) (0.50)  

(B) Utilization prior to LDL testing (monthly claims) 
All drugs 1.54 1.66 0.03 

 (2.02) (3.13)  
Generic drugs 1.26 1.36 0.03 

 (1.70) (2.55)  
Cardiovascular drugs 0.53 0.59 0.03 

 (0.95) (1.70)  
In-patient admissions 0.01 0.01 -0.03 

 (0.11) (0.05)  
Outpatient services 3.31 3.07 -0.03 

 (7.19) (5.29)  
All medical tests 1.21 1.19 -0.00 

(6.24) (6.62) 
(C) Same-day medical testing 

 

Same-day medical tests 28.75 29.03 
(21.29) (21.25) 

(D) Insurance coverage (implicit) 

0.01 

Coverage ratio 0.36 0.37 0.04 
 (0.25) (0.26)  

N 2,382 2,122  

Notes. Parentheses show sample standard deviations. 



 

 

Table A.11: Major diagnostic categories associated with studied LDL tests. 
 

(1) (2) (3) (4) 
Freq. Pct. Freq. Pct. 

129mg/dL 130mg/dL 
Diseases and Disorders of the Nervous System 11 0.94% 10 0.90% 
Diseases and Disorders of the Eye 1 0.09% 1 0.09% 
Diseases and Disorders of the Ear, Nose, Mouth and Throat 2 0.17% 9 0.81% 
Diseases and Disorders of the Respiratory System 4 0.34% 6 0.54% 
Diseases and Disorders of the Circulatory System 116 9.92% 111 9.97% 
Diseases and Disorders of the Digestive System 22 1.88% 16 1.44% 
Diseases and Disorders of the Hepatobiliary System and Pancreas 1 0.09% 2 0.18% 
Diseases and Disorders of the Musculoskeletal System and Connective 21 1.80% 16 1.44% 
Tissue Diseases and Disorders of the Skin, Subcutaneous Tissue and Breast 
Endocrine, Nutritional and Metabolic Diseases and Disorders 

 

3 
 

0.26% 
 

8 
 

0.72% 
Diseases and Disorders of the Kidney and Urinary Tract 200 17.11% 166 14.91% 
Diseases and Disorders of the Male Reproductive System 12 1.03% 13 1.17% 
Diseases and Disorders of the Female Reproductive System 3 0.26% 7 0.63% 
Pregnancy, Childbirth and the Puerperium 3 0.26% 3 0.27% 
Newborns and Other Neonates with Conditions Originating in Perinatal Period 
Diseases and Disorders of the Blood, Blood Forming Organs, Immunological 
Disorders Myeloproliferative Diseases and Disorders, Poorly Di↵erentiated Neoplasm 
Infectious and Parasitic Diseases, Systemic or Unspecified Sites 

13 
 
 

2 

1.11% 
 
 

0.17% 

8 
 
 

0 

0.72% 
 
 

0.00% 
Mental Diseases and Disorders 4 0.34% 6 0.54% 
Alcohol/Drug Use and Alcohol/Drug Induced Organic Mental Disorders 0 0.00% 0 0.00% 
Injuries, Poisonings and Toxic E↵ects of Drugs 0 0.00% 1 0.09% 
Burns 0 0.00% 0 0.00% 
Factors Influencing Health Status and Other Contacts with Health Services 243 20.79% 216 19.41% 
Multiple Significant Trauma 0 0.00% 0 0.00% 
Human Immunodeficiency Virus Infections 0 0.00% 0 0.00% 
Missing/Unspecified 508 43.46% 514 46.18% 

Total 1169 100% 1113 100% 
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