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Large-scale online platforms launch hundreds of randomized experiments (a.k.a. A/B tests) every day to

iterate their operations and marketing strategies, while the combinations of these treatments are typically

not exhaustively tested. It triggers an important question of both academic and practical interests: Without

observing the outcomes of all treatment combinations, how to estimate the causal effect of any treatment

combination and identify the optimal treatment combination? We develop a novel framework combining

deep learning and doubly robust estimation to estimate the causal effect of any treatment combination for

each user on the platform when observing only a small subset of treatment combinations. Our proposed

framework (called debiased deep learning, DeDL) exploits Neyman orthogonality and combines interpretable

and flexible structural layers in deep learning. We prove theoretically that this framework yields efficient,

consistent and asymptotically normal estimators under mild assumptions, thus allowing for identifying the

best treatment combination when only observing a few combinations. To empirically validate our method,

we then collaborate with a large-scale video-sharing platform and implement our framework for three exper-

iments involving three treatments where each combination of treatments is tested. When only observing a

subset of treatment combinations, our DeDL approach significantly outperforms other benchmarks to accu-

rately estimate and infer the average treatment effect (ATE) of any treatment combination, and to identify

the optimal treatment combination.

Key words : Deep Learning, Double Machine Learning, Causal Inference, Field Experiments,

Experimentation on Online Platforms

1. Introduction

Large-scale online platforms have penetrated billions of people’s daily lives in various areas. As of

January 2021, more than 53.6% of the world population (i.e., 4.2 billion people) are active social

media users.1 People connect with each other on social network platforms such as Facebook and

TikTok, shop online on e-commerce platforms such as Amazon and Alibaba, and hail a ride on

ride-sharing platforms such as Uber and Lyft, etc. Because of the tremendous values created by

1 See https://datareportal.com/reports/digital-2021-global-overview-report.
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these platforms, firms that develop and own such businesses are now worth more than 1 trillion US

dollars. For example, in October 2022, the market value of Amazon was 1.2 trillion USD, that of

Alphabet was 1.4 trillion USD, and that of Microsoft was 1.9 trillion USD. It is also estimated by

the Committee on Judiciary of the USA in the Investigation of Competition in Digital Markets2

that the total market value of platform-based tech firms will reach more than 30% of the annual

global GDP within the next ten years.

Equipped with mountainous user data and advanced information technology, online platforms

base their critical business decisions on advanced data analytics techniques. Of central impor-

tance are randomized experiments (a.k.a. A/B tests or field experiments; we use A/B tests and

experiments interchangeably hereafter), which are widely considered the gold standard for causal

inference and policy evaluation. Under an A/B test, a platform randomly assigns its users to differ-

ent groups and applies a different treatment to users in each group. The controlled randomization

enables the platform to credibly attribute the outcome differences of different user groups to the

treatment effect of the strategies. Because of the online nature of their business and the vast user

traffic, platforms can conveniently run A/B tests to evaluate and optimize their product design,

pricing, and recommendation strategies (Kohavi et al. 2020). Usually, the analyst casts a policy

change in these aspects as a treatment and compares it with the existing policy through an A/B

test. Leading online platforms such as Facebook, Amazon, Google, and TikTok each run more

than 10,000 online experiments annually, many of which engage millions of their users (Kohavi and

Thomke 2017).

To quickly iterate its business operations, a large-scale online platform typically runs hundreds of

A/B tests concurrently (see, e.g., Xiong et al. 2020). The sheer number of tests makes it difficult to

test the joint effect of different treatments. In particular, due to the limited user traffic, a standard

online experimentation method for the platform is the orthogonal traffic assignment design (Tang

et al. 2010, Xiong et al. 2020): The treatment assignments of different individual A/B tests are

independent. As a consequence, each user of the platform may be treated by a lot of A/B tests

simultaneously. On the one hand, the orthogonal experiment design utilizes the user traffic of

the platform more efficiently. Orthogonality ensures non-interference among experiments, so the

platform gets a credible causal estimate for each treatment in each experiment. On the other

hand, it largely ignores the joint effects caused by the combination of treatments in practice. It

does not allow the platform managers to find the best combination of treatments for each user.

In practice, platform managers typically assume the treatment effects of different A/B tests are

linearly additive. Hence, the decision on whether and how to expand the traffic of one treatment,

2 See https://judiciary.house.gov/uploadedfiles/competition_in_digital_markets.pdf?utm_campaign=

4493-519.This link no longer works.

https://judiciary.house.gov/uploadedfiles/competition_in_digital_markets.pdf?utm_campaign=4493-519
https://judiciary.house.gov/uploadedfiles/competition_in_digital_markets.pdf?utm_campaign=4493-519
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Figure 1 Heterogeneous Response to Two Experiments

for example, to all platform users, is irrespective of other concurrent experiments. Such a decision

paradigm is particularly prevalent due to organizational reasons. For example, different stakeholders

in a firm (e.g., the machine learning (ML) engineers and product managers) often manage their own

set of A/B tests, and there can be little communication and coordination. The combined effects of

multiple experiments are largely treated in a simple manner with the linear additivity assumption

made.

Combining different treatments can create synergistic or antagonistic effects, depending on how

different treatments interact with each other. It is usually difficult to predict which one is in effect

without a formal test. In the worst case, two treatments that both benefit the platform can in fact

hurt the platform instead once combined. To empirically illustrate that the interactions between

different treatments should not be ignored, we collaborate with a large-scale online video-sharing

platform (referred to as Platform O hereafter). We plot in Figure 1 the relationships between

the treatment effects of two concurrent treatments (more institutional details will be provided in

Section 4). We observed the causal effects of all four treatment combinations (2×2) in this example

because the experiments are run under the full factorial design. To investigate the heterogeneous

responses to the treatments with respect to user covariates, we divide the experimented users

into 1,254 subgroups based on their pre-treatment covariates, including gender, age, location,

and degree of activeness. Each observation in Figure 1 represents one such subgroup. Figure 1(a)

plots, for each subgroup, the true observed effect size in the experiment as well as the calculated

effect size if we assume these two effects are linearly additive. It clearly reveals the substantial gap

from the ground-truth to simply adopt the linear addition rule in policy evaluation with multiple

experiments. Figure 1(b) illustrates that different user groups have drastically diverse responses

toward the treatments, some with increasing marginal returns/losses and others with decreasing

marginal returns/losses.

Given these observations, in this paper, our main research question is: When conducting multiple

A/B tests and only observing a small subset of treatment combinations, how to estimate and infer
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the causal effect of all treatment combinations and how to identify the optimal treatment combina-

tion? As discussed earlier, the most commonly adopted approach to solving this problem is to run

individual experiments independently and infer the combined treatment effect by assuming linear

additivity of treatment effects, an assumption not supported by our data and sensibly question-

able in practice. An alternative solution is the factorial experiment design, which directly tests the

causal effect of each treatment combination (Box et al. 1978, Wu and Hamada 2011, Dasgupta

et al. 2015). However, for full factorial design, the user traffic required to obtain reliable estimation

and inference results grows exponentially in the number of treatments, making this approach infea-

sible for a large-scale platform that runs hundreds of experiments concurrently. Another tempting

approach might be to predict the outcome of each user under each treatment combination via an

end-to-end ML model such as a deep neural network (DNN) in which one incorporates treatments

as inputs. Such an approach is generally not amenable to the inference of causal effects. The in-

herent bias due to regulation or overfitting leads to an insufficient convergence to the true causal

effects (e.g., average treatment effect, ATE) and, consequently, undesired statistical properties,

which hinders effective causal inference. (see, e.g., Chernozhukov et al. 2018).

Consequently, we propose a novel statistical framework (called debiased deep learning, DeDL)

that combines deep learning (DL) and double/debiased machine learning (DML) to estimate the

causal effect of any treatment combination when only observing a subset of combinations. The

framework yields asymptotically normal (therefore naturally
√
n-consistent) estimators, thus allow-

ing for valid inference. In addition to its theoretical elegance, our DeDL framework is further vali-

dated by its implementation for three real A/B tests on Platform O involving millions of users. Our

empirical results suggest that the DeDL approach substantially outperforms the linear-regression-

and deep-learning-based benchmarks to accurately estimate and infer the ATE of any treatment

combination, and to correctly identify the best combination. Synthetic data further demonstrate

the robust performance of DeDL under model misspecification.

We seek to make both theoretical and empirical contributions in this paper, which are summa-

rized as follows.

A Novel Causal Inference Framework for Multiple A/B tests with Theoretical Guar-

antee. As our main contribution, we provide a novel framework for researchers and practitioners

to analyze the treatment effects of concurrent experiments and identify the optimal treatment

combination. Our post-experiment causal inference framework leverages a combination of DL and

DML to infer the ATE of any treatment combination. More specifically, we propose a DNN with an

interpretable model layer, which explicitly captures the interactions between different experiments.

Our framework also exploits Neyman orthogonality and generates asymptotically normal estima-

tors, which makes statistical inference possible. Transparent and easy-to-check sufficient conditions
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for the validity of our framework are derived. In particular, we emphasize that, compared with

the full factorial design that requires the user traffic to increase exponentially in the number of

individual treatments, the user traffic necessary for estimation and inference by our framework

only scales linearly due to the novel model layer in the DNN succinctly capturing the interactions

between individual treatments.

Empirical Validation of Our Framework. To demonstrate the practicality of DeDL, we

implement the framework for a multiple-experiment setting on Platform O. The unique experi-

mental architecture of these experiments enables us to observe the ground-truth causal effects of

any treatment combination, thus allowing for comparing different approaches benchmarked against

the ground truth and quantifying their estimation errors. We compare our DeDL approach with

a set of linear-regression- and DL-based benchmarks. Importantly, we show that our framework

yields much more accurate estimation for the ATE and more precise identification of the optimal

treatment combination. Through comprehensive synthetic data in further simulation studies, we

demonstrate the robustness of our DeDL framework in the presence of large biases in DNN training

and a misspecified model layer.

To the best of our knowledge, this is the first work to validate the practical strength of the

theoretically elegant DML-based methods through large-scale field experiments (N >2,000,000)

where the unconfoundedness assumption is satisfied. Our discussion shed light on several issues on

the practical side when applying not only our framework but also many other popular DML-based

methods together with deep neural nets, such as when to expect the debias term adds value to

inference and how to use cross-validation errors in the training stage to test if the model struc-

ture is misspecified. In addition, our DeDL framework can be readily applied to the analysis of

individual-level treatment effects, continuous treatment levels, and observational data under un-

confoundedness. Therefore, we believe that our study has the potential to inspire future researchers

and practitioners to utilize the combined method of DL and DML for causal inference.

Organization of the paper. The rest of this paper is organized as follows. In Section 2, we

position our paper in the relevant literature. In Section 3, we present our debiased deep learning

framework to infer treatment effects and identify the optimal treatment combination. Section 4

applies the framework to analyze real-world experiments. In Section 5, we conduct comprehensive

synthetic experiments to demonstrate the robust performance of our proposed framework. Section

6 concludes the paper. All proofs are relegated to the Appendix.

2. Literature Review

In the next, we review several streams of literature closely connected to our work.

The theory and applications of DML. The proposed DeDL framework stems from the recent

advances in the semiparametric estimation and inference, the DML method in particular (e.g.,
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Chernozhukov et al. 2018). Combining ML with Neyman orthogonality, the DML method per-

forms remarkably well in estimating the parameters of interest in the presence of regularization

and/or overfitting biases to estimate the nuance parameter(s). In particular, Farrell et al. (2021)

establish novel nonasymptotic high-probability bounds for nuance parameter estimation with deep

feedforward neural nets. Chiang et al. (2022) extend the DML framework by proposing a multiway

cross-fitting algorithm suitable for multiway clustering sampled data such as panel data. Cher-

nozhukov et al. (2022) develop an automatic DML framework using Lasso to learn the debiased

term that often presents in the influence function directly from data. Combining DML with opti-

mization further promotes its theoretical development in an operations context. For example, Qi

et al. (2022) propose a personalized pricing algorithm by maximizing the expected revenue esti-

mated using DML. We contribute to this literature by adapting the framework of Farrell et al.

(2020) for capturing individual heterogeneity, tailoring it for the multiple-experiment setting, and

pinpointing the technical conditions required for deriving valid estimators. Furthermore, we derive

the estimator for the best-arm identification problem in this setting.

The DML framework has been extensively applied in many empirical settings for causal inference.

For example, Knaus (2020) employs DML to evaluate the effectiveness of four labor programs

in Switzerland. Dube et al. (2020) utilize DML to obtain debiased estimators for the effects of

reward for MTurk workers on project duration to investigate monopsony in online labor markets.

Farbmacher et al. (2022) apply DML combined with causal mediation analysis to study the effect of

health insurance coverage on general health. Fan et al. (2022) explore the causal effect of maternal

smoking on the birth weight of newborn babies via the DML estimator. Leveraging hundreds of

experiments on Facebook, Gordon et al. (2022) find that DML implemented with observational

data under the selection of ads for users may have substantial biases from the ground truth. While

all applications beyond Gordon et al. (2022) use observational data, our research provides the

performance the DML method with the data from a set of large-scale field experiments such that the

fundamental unconfoundedness assumption is guaranteed. Contrary to the conclusion form Gordon

et al. (2022) that DML estimates are far from experimental results, we show that our debiased

estimators are accurate and valid for inference, significantly outperforming other benchmarks.

Estimation and inference with multiple experiments. Conventionally, researchers examine

multiple-experiment settings through the lens of factorial design (i.e., full or fractional factorial

designs). Interested readers are referred to Box et al. (1978) and Wu and Hamada (2011) for the

detailed discussions of these classical approaches. Recent works (e.g., Dasgupta et al. 2015, Pashley

and Bind 2019) marry such design strategies with the potential outcome framework (Imbens and

Rubin 2015) for the study of causal inference. However, factorial design is hardly applicable to

large-scale A/B testing platforms, where the number of experiments m can potentially be hundreds
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or even thousands. It is next to impossible to obtain the 2m treatment groups as required by

the full-factorial design. Even with the fractional factorial design, the sheer number of treatments

implies that practically one can only test O(m) treatment combinations, suggesting only O(m)

direct or interaction effects are identifiable. The vast majority of the effects are, however, aliased

away. Therefore, factorial design methods are rarely employed on large-scale A/B testing platforms.

Proposing a new strategy to deal with the inference problem in such settings, our work applies

the DML framework to the empirical analysis in the multiple-experiment setting and requires

looser identification conditions. With an appropriately specified form of the response function to

the treatment for each individual, we only need to observe m+2 treatment combinations for the

treatment effect inference of all 2m combinations. We also apply this framework to a real multiple-

experiment setting on Platform O and show the empirical success of the framework in this setting.

Causal inference and its applications to online platforms. Causal inference has long

been a central topic in many fields, such as economics, psychology, medical science, marketing,

and operations (e.g., see Angrist and Pischke 2009, Wooldridge 2010). Recent advances in ML

and high-dimensional statistics have enabled substantial development in this area. To name a few,

Xie and Aurisset (2016) and Guo et al. (2021) propose variance reduction techniques that use

covariates to adjust estimators and obtain more precise ones with fewer data. Goli et al. (2022)

propose a theoretical framework to overcome the bias due to the interference in a ranking exper-

iment on travel websites. Kallus et al. (2018) use matrix factorization and bound the estimation

errors for average treatment effects to reduce the noise and measurement error in covariates. Lee

and Shen (2018) estimate the winner’s curse bias and use it to correct the final estimator for treat-

ment effects. Athey et al. (2018) propose a two-stage approximate residual balancing algorithm to

eliminate the bias in estimators obtained through sparse linear models. Arkhangelsky et al. (2021)

propose a synthetic difference-in-differences estimator to deal with panel data, which possesses

unbiasedness and consistency under regularity assumptions. Zhang and Politis (2022) improve the

ridge regression estimator by adding a correction part to debias the original estimator. They use a

wild bootstrap algorithm to construct a confidence interval. An influential school of works combine

ML methods with causal inference (Athey and Imbens 2016, Wager and Athey 2018). Among this

literature, as discussed above, DML (Chernozhukov et al. 2018, Farrell et al. 2020) has received

much attention.

In particular, our paper speaks to the applications of causal inference to online platforms. With

a large amount of data available on online platforms, works in this area have proliferated in recent

years. On the empirical side, field experiments on large-scale platforms enable causal inference in a

variety of business settings (e.g., Burtch et al. 2015, Cheung et al. 2017, Edelman et al. 2017, Zhang

et al. 2020, Zeng et al. 2022). On the theoretical side, researchers propose innovative methods to



Ye et al.: Deep Learning Based Casual Inference for Combinatorial Experiments
8 Article submitted to Management Science; manuscript no. (Please, provide the manuscript number!)

overcome challenges arising from online platforms, such as two-sided randomization (e.g., Ye et al.

2022, Nandy et al. 2021, Johari et al. 2022), sequential experiments (e.g., Xiong et al. 2022, Ju

et al. 2019, Song and Sun 2021), and block randomization (Candogan et al. 2021). Whereas this

literature typically focuses on the single-experiment setting, we study the inference problem with

multiple experiments.

3. De-biased Deep Learning (DeDL) Framework

In Section 3.1, we first introduce the DL framework built upon Farrell et al. (2020) to study the

estimation and inference of treatment effects in our multiple experiments setting.3 Leveraging the

semiparametric influence function derived via the pathwise derivative method (see Newey 1994,

Farrell et al. 2020), we then demonstrate how we estimate our model in Section 3.2 and how to

construct valid estimators to identify the best treatment combination in Section 3.3.

3.1. Structured Deep Learning Model

We first present the DL-based inference framework for multiple experiments in a large platform.

There are m concurrent field experiments on the platform, each with binary treatment levels,

represented by T ∈ {0,1}m.4 Without loss of generality, we focus on the binary treatment case,

which is a common practice for A/B tests on large-scale platforms, but our framework can be readily

extended to continuous and discrete treatment levels. The platform can observe the individual-level

response to the treatment Y ∈ R,5 along with the individual-level pre-treatment covariates X ∈

RdX and treatment level T . The treatment assignment mechanism is denoted by the conditional

distribution ν(· | ·), i.e., ν(t |x) = P[T = t |X =x] for any t∈ {0,1}m given any x.

Following Farrell et al. (2020), we assume the data generating process (DGP) has the semi-

parametric form

E[Y |X =x,T = t] =G(θ∗(x), t), (1)

where G(·, ·) is the known link function, and θ∗(·) :RdX 7→Rdθ are the unknown nuisance parame-

ters as functions of covariates x. In particular, θ∗(·) characterizes the heterogeneity in outcomes,

and we shall predict them by ML models such as DNNs. The pre-specified link functionG(·, ·) allows

for the flexibility and interpretability of the relationship between the outcome Y and the treatment

3 We use “multiple experiments”, “multiple treatments”, and “combinatorial experiments” interchangeably.

4 On notations: Throughout the paper, vectors, and matrices are in boldface. Vectors are written as column vectors,
and v′ represents the transpose of vector v. Random variables are represented by capital letters and their realizations
by lower-case letters. The L2 norm of function f(·) is defined as ||f(x)||L2(X) := E[f(X)2]1/2. We use En to denote
the sample average and M ≻ 0 to denote that matrix M is positive definite.

5 For expositional ease, we focus on the one-dimensional outcome setting throughout this paper. In practice, online
platforms could be interested in multiple outcome metrics (e.g., the number of active users and revenue); and the
extension of our framework to the case where Y ∈RdY (dY > 1) is straightforward.
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combination t. For example, if the link function is linear, i.e., E[Y |X = x,T = t] = θ∗(x)′t, the

effect of any treatment combination equals the linear summation of each individual treatment ef-

fect therein. Combining the interpretability of the link function and the generalizability of ML, our

framework not only provides practitioners with accurate inferences for the experimental outcome

but also delineates the interactions between different treatments.

We apply our framework to address the following two essential questions of both academic

and practical values. (a) What is the ATE for each treatment combination? (b) Which treatment

combination is the most valuable for the platform (i.e., with the highest ATE)? The second question

is also referred to as the best-arm identification problem in the literature (Gabillon et al. 2012,

Lattimore et al. 2016). Our framework involves a two-stage procedure. In the first training stage,

we adopt DL to obtain a consistent estimator of the unknown parameter θ∗(·), which is denoted

by θ̂(·). In the second estimation & inference stage, based on the trained parameter θ̂(·), we

construct asymptotically normal estimators for the quantities of managerial interest (e.g., ATE),

thus yielding valid inferences.

Figure 2 Illustration of Deep Neural Network with the Structured Model Layer

Inspired by our DGP (1), in the training stage, we use DNNs to approximate the unknown param-

eter θ∗(·). We then add a model layer (i.e., link function) on top of the DNNs to connect the outcome

with the estimated parameters θ̂(·) and treatment level t. Figure 2 illustrates the whole model

from X and T to Y . We use {(yi,x′
i, ť

′
i)

′ : 1≤ i≤ n} to denote the observed data, and use the check

symbol over the treatment ť to represent the realized treatment level in experiments. Note that

DGP (1) suggests that the true parameter functions solve θ∗(·) ∈ argmin
θ(·)

E[(Y −G(θ(X),T ))2].

Consequently, we use the mean squared error, denoted by ℓ(y, t,θ(x)) = (y−G(θ(x), t))2 as the loss
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function used to train the estimator θ̂(·). The estimators of θ∗(·) can be obtained by minimizing

the empirical loss on the training data set

θ̂(·) := argmin
θ(·)∈FDNN

1

n

n∑
i=1

ℓ(yi, ťi,θ(xi)) :=
1

n

n∑
i=1

(yi −G(θ(xi), ťi))
2, (2)

where FDNN is a pre-specified class of (deep) fully-connected neural nets. We will detail the choice

of the (known) link function G(·, ·) and the training process of θ̂(·) in Section 3.2 below.

In the estimation and inference stage, the key is to construct estimators for (a) the ATE of any

treatment combination and (b) the improvement in ATE for the identified best arm over any other

treatment combination. Formally, we define

µ(t) :=E[G(θ∗(X), t)]−E[G(θ∗(X), t0)] (3)

as the ground-truth ATE of treatment combination t∈ {0,1}m, where t0 = 0 represents the control

condition without any treatments. Denote µ̂(t) as our proposed estimator for µ(t), we show that our

framework provides
√
n-consistent, asymptotically normal, and semiparametric efficient estimators

µ̂(·).

We denote t∗ as the best treatment, the treatment with the largest value of µ(t), and let t̂∗ :=

argmaxt∈{0,1}m µ̂(t) be our proposed estimator for t∗. We note that the ATE increment of the true

best arm over any treatment combination is the difference between their (ground truth) ATEs,

τ(t) := µ(t∗)−µ(t), t∈ {0,1}m, (4)

which quantifies the loss of using t instead of t∗. Notice that identifying the best arm is equivalent

to identifying the ATE increment of each arm. Therefore, let τ̂(t) := µ̂(t̂∗)− µ̂(t) be an estimator

of τ(t) for each t ∈ {0,1}m. We show that our proposed estimator τ̂(·) is also
√
n-consistent and

asymptotically normal, and the empirical best-arm agrees with the true best-arm with probability

approaching one.

3.2. Training Stage

In this subsection, we aim to theoretically show that, the empirical loss minimization estimator

θ̂(·) defined by (2) converges to the unknown parameter θ∗(·) sufficiently fast for valid inference

in the second stage under reasonable regularity assumptions and a properly chosen link function

G(·, ·) that well fits our multiple A/B tests setting. Throughout this paper, we make a regularity

assumption commonly used in the DNN estimation literature (e.g., Yarotsky 2017, Farrell et al.

2020), i.e., Assumption 3 in Appendix A.1 It requires that the unknown ground-truth parameter

functions θ∗(·) are uniformly bounded and sufficiently smooth.
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We capture the richness of individual responses to different treatments with the non-parametric

function θ∗(X), while given θ∗(X) we essentially assume that the individual outcomes are fully

structured and described by G(·, ·). The choice of the link function should, on the one hand,

reflect the economic nature of the multiple A/B tests business context and, on the other hand,

be accompanied by associated treatment assignment mechanisms to ensure the identifiability and

convergence of the estimates θ̂(·). We propose the following link functions with clear economic

interpretations.

Assumption 1 (Link Functions). We consider the following link functions G(θ(x), t) where

θ(·) :RdX 7→Rdθ .

(a) Multiplicative Form. G(θ(x), t) = θ0(x)(1 + θ1(x)t1) . . . (1 + θm(x)tm), where µ ≤ θ0(x) ≤M ,

and µ≤ 1+ θk(x)≤M, k= 1, . . . ,m, uniformly in x, for some M >µ> 0.

(b) Standard Sigmoid Form. G(θ(x), t) = a/
(
1 + exp(−(θ0(x) + θ1(x)t1 + · · · + θm(x)tm))

)
+ b,

where a ̸= 0 and b are known constants.

(c) Generalized Sigmoid Form I. G(θ(x), t) = θm+1(x)/
(
1+ exp(−(θ1(x)t1 + · · ·+ θm(x)tm))

)
.

(d) Generalized Sigmoid Form II. G(θ(x), t) = θm+1(x)/
(
1 + exp(−(θ0(x) + θ1(x)t1 + · · · +

θm(x)tm))
)
.
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Figure 3 Illustration of Generalized Sigmoid Form II with Two Types Platform Users: Marginal Decreasing

(Left) and Marginal Increasing (Right)

All four link functions in Assumption 1 capture the heterogeneity with respect to different

covariates x. The link function of theMultiplicative Form (Assumption 1(a)) assumes multiplicative

relative effect size for different individual treatments, e.g., if each of two treatments increases the

effect by 10%, then combined treatment increases by (1 + 10%)(1 + 10%) − 1 = 21%. However,

Multiplicative Form can only characterize the increasing marginal effect due to its global convexity.

The link function of the sigmoid forms (Assumption 1(b), (c), and (d)) leverages the convex-

concave structure of the sigmoid function, thus capturing both increasing and decreasing marginal

effects at the individual level. As a result, it is able to capture both marginal increasing and
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decreasing effects in ATE. Comparing three sigmoid link functions, one can notice that the Standard

Sigmoid Form (Assumption 1(b)) and the Generalized Sigmoid Form I (Assumption 1(c)) are

special cases of the Generalized Sigmoid Form II (Assumption 1(d)).

We illustrate the co-existence of decreasing and increasing marginal effects with the Generalized

Sigmoid Form II through an example. We consider two experiments (ti ∈ {0,1}2) and two user

types as shown in Figure 3, where the y-axis represents an individual’s average outcome E[Yi|xi, ti]

follows the Generalized Sigmoid Form II (Assumption 1(d)). Under the control condition (i.e.,

t = t0 = (0,0)′), the expected outcome of both user types is 5 (i.e., E[Yi|xi, t = (0,0)′] = 5 for

all i), whereas the treatment effect of each experiment on each user type is 2 (i.e., E[Yi|xi, t =

(1,0)′] = E[Yi|xi, t = (0,1)′] = 7 for all i). For the first (resp. second) user type, θm+1 = 10 (resp.

θm+1 = 20). Straightforward calculation implies that E[Yi|xi, t = (1,1)′] = 8.5 (i.e., the ATE is

8.5− 5 = 3.5 < 2 + 2 = 4, suggesting the decreasing marginal effects) for the first user type and

E[Yi|xi, t= (1,1)′] = 9.3 for the second user type (i.e., the ATE is 9.3− 5 = 4.3> 4, suggesting the

increasing marginal effects). Therefore, if the first type of users takes more (resp. less) than 36%

of the entire population, the platform will have a decreasing (resp. an increasing) marginal ATE.

The Standard Sigmoid Form with known constants a and b may be restrictive, and cannot model

the different outcome ranges for different individuals. The Generalized Sigmoid Forms I and II

resolve this issue by incorporating the parameter θm+1(x), allowing for flexible and heterogeneous

ranges of outcomes. Hence, we adopt the link function of Generalized Sigmoid Form II in our

empirical study.

With our proposed link functions, we are ready to show the identifiability and convergence

rate of the DNN in our framework. For identifiability, we further need the assumption that the

treatment assignment mechanism is sufficiently “regular” (see Assumption 4 in Appendix A.1).

For convergence, the additional assumption on the data observations being i.i.d. and bounded, and

the nonparametric function θ∗(x) being sufficiently smooth is also imposed (see Assumption 3 in

Appendix A.1). Formally, we have the following proposition, the proof of which is relegated to

Appendix A.3.

Proposition 1 (Identifiability and Convergence). The following statements hold.

(a) Under Assumptions 1 and 4 (in Appendix A.1), the parameter function θ∗(x) can be nonpara-

metrically identified in DGP (1).

(b) Under Assumptions 1, 3 (in Appendix A.1), and 4, if the structured DNN as illustrated in

Figure 2 has width H =O(ndX/2(p+dX ) log2 n) and depth L=O(logn), there exists a positive

constant C which depends on the fixed quantities in Assumption 3, such that with probability

at least 1− exp(n−dX/(p+dX ) log8 n), it holds

∥θ̂k −θ∗
k∥2L2(X) ≤C

{
n
− p

p+dX log8 n+
log logn

n

}
,
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for each k ∈ [dθ] when n large enough.

The key step to prove Proposition 1 is translating the convergence of DNN estimation on out-

comes Y into that of the parameter function estimates θ̂(·) under the treatment assignment mech-

anism sufficient for identification. The convergence rate given by Proposition 1 may not be optimal

(see Farrell et al. 2021), but sufficiently fast for the subsequent inference in our setting. We also

remark that, consistent with the DL estimation literature, the optimization errors are ignored in

the training stage to obtain θ̂(·) in our theoretical analysis. Another important implication of

Proposition 1 is that, for our link functions in Assumption 1, it suffices to observe m+ 2 treat-

ment combinations (see Assumption 4 in Appendix A.3 for details), which is orders of magnitude

smaller than 2m, to ensure the identifiability and sufficiently fast convergence. In other words,

suppose there are 10 different treatments and in turn 210 = 1024 possible treatment combinations,

our framework only needs to observe 10+2= 12 combinations to estimate the parameter function

θ̂(·) with sufficient convergence, which is only 12/1024 = 1.2% of the total possible combinations.

3.3. Estimation and Inference Stage

Next, we leverage our nonparametric estimates θ̂(x) obtained through DNNs to construct asymp-

totically normal estimators for µ(·) and τ(·). We define the advantage function of the treatment

combination t1 ∈ {0,1}m over the treatment combination t2 ∈ {0,1}m as

H(x,θ(x); t1, t2) :=G(θ(x), t1)−G(θ(x), t2).

Thus, the ATE of any treatment combination t∈ {0,1}m can be rewritten as

µ(t) =E[H(x,θ∗(x); t, t0)].

Analogously, the ATE increment of the identified best-arm t̂∗ over any treatment combination t

can be written as

τ(t) :=E[G(θ∗(x), t̂∗)]−E[G(θ∗(x), t)] =E[H(x,θ∗(x); t̂∗, t)].

Hence, it suffices to test the 1-sided hypothesis τ(t)≥ 0 for all t. In this section, we focus on ATE

discussion, whereas the detailed discussion of best-arm identification is relegated to Appendix A.7.

Note that we cannot directly use the plug-in estimator µ̂(t) = 1
n

∑n

i=1H(xi, θ̂(xi); t, t0) for ATE

estimation, which is generally not asymptotically normal due to the potential bias of ML models.

To solve this issue, our inference is mainly built upon the semi-parametric technique — influence

function (a.k.a. Neyman orthogonal score), which implies the first-order insensitive to perturbations

in the nuisance parameters. We refer interested readers to Newey (1994) and Subsection 2.2.5 in

Chernozhukov et al. (2018) for more discussions of influence functions and Neyman orthogonality.

Similar to other work using influence function in semi-parametric statistics, we make the following

assumption:
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Assumption 2. For all t ∈ {0,1}m, the following conditions hold uniformly with respect to all

x: (i) The DGP (1) holds; (ii) Λ(x) := 2E[Gθ(θ(x),T )Gθ(θ(x),T )′|X = x] is invertible with

bounded inverse, where Gθ(·, t) is the gradient of G(·, t) with respect to θ; and (iii) The ATE µ(t)

is identified and pathwise differentiable.

We remark that Assumption 2 is standard and not restrictive in the semiparametric statistics

literature. The invertibility of Λ(x) is commonly assumed for deriving the influence function. As

shown in Appendix A.5, this condition can be translated into a lenient one under the Generalized

Sigmoid Form II. Finally, the identification of µ(t) immediately follows Proposition 1(a) and the

pathwise differentiability of µ(t) is also standard.

Proposition 2. Suppose Assumption 2 holds. Then, the influence function for µ(t) is

ψ(z,θ,Λ; t, t0)−µ(t) with,

ψ(z,θ,Λ; t, t0) =H(x,θ(x); t, t0)−Hθ(x,θ(x); t, t0)
′Λ(x)−1ℓθ(y, ť,θ(x)), (5)

where Λ(x) := 2E[Gθ(θ(x),T )Gθ(θ(x),T )′|X = x], Gθ is the gradient of G with respect to θ,

Hθ(x,θ(x); t, t0) :=Gθ(θ(x), t)−Gθ(θ(x), t0) is the gradient of H(x, ·; t, t0) with respect to θ and

ℓθ(y, ť,θ(x)) := 2Gθ(θ(x), ť)(G(θ(x), ť)− y) is the gradient of ℓ(y, ť, ·) with respect to θ.

The influence function defined by Eqn. (5) contains a plug-in term H(x,θ(x); t, t0) and a de-

biasing term −Hθ(x,θ(x); t, t0)
′Λ(x)−1ℓθ(y, ť,θ(x)). Therefore, we call our framework de-biased

deep learning (DeDL). In particular, the debiasing term is the multiplication of three gradients,

which is easy to compute with the known treatment assignment mechanism ν(· |x).

Based on this influence function and the cross-fitting technique (e.g., Chernozhukov et al. 2018),

we can construct estimators as illustrated in Algorithm 1. We refer interested readers to Appendix

A.6 for the details of constructing the estimators µ̂DeDL(t) by Eqn. (23), Ψ̂DeDL(t;µ) by Eqn. (24),

and the confidence interval ĈIDeDL(t;µ) by Eqn. (25).

We now present the following Proposition 3 on the asymptotic normality, which follows from

Chernozhukov et al. (2018).

Proposition 3. Suppose {zi : i = 1, . . . , n} is a random sample that obeys Assumption 2 and

Λ̂s(xi) is invertible uniformly for x. Furthermore, we assume for all subsamples s = 1,2, . . . , S,

the estimators obey ∥θ̂sk− θ∗sk∥L2(X) = o(n−1/4), k ∈ {1, . . . , dθ}, which holds under the assumptions

and regularity conditions (for the structured DNN) of Proposition 1(b).

(a) For any treatment level t∈ {0,1}m,

√
n
(
Ψ̂DeDL(t;µ)

)−1/2
(µ̂DeDL(t)−µ(t))→d N (0,1),
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Algorithm 1 DeDL Framework

1: (Cross-fitting) Split data samples into S non-overlapping folds Ss, s= 1, . . . , S.

2: (Training) For each fold s, use the complement of Ss to train DNN to get θ̂s(·) based on (2),

and compute Λ̂s(·) = 2E[Gθ(θ̂s(x),T )Gθ(θ̂s(x),T )′|X =x].

3: (ATE Estimation and Inference) For each t∈ {0,1}m, leverage the influence function ψ and use

data S to construct the ATE estimator µ̂DeDL(t) and variance estimator Ψ̂DeDL(t;µ). Conduct

ATE inference based on µ̂DeDL(t) and Ψ̂DeDL(t;µ).

4: (Best-arm Identification) Find empirical best arm t̂∗ := argmaxt µ̂(t). Similarly, use influence

function ψ and cross-fitting to construct estimators τ̂DeDL(t) and Ψ̂DeDL(t; τ) (see Appendix A.7)

for the inference on best arm identification.

(b) Furthermore suppose the best arm t∗ := argmax
t∈{0,1}m

µ(t) is unique. We have t̂∗ = t∗ with probability

approaching one as the sample size goes to infinity, and for any treatment level t∈ {0,1}m,

√
n
(
Ψ̂DeDL(t; τ)

)−1/2
(τ̂DeDL(t)− τ(t))→d N (0,1).

Under reasonable assumptions, Proposition 1(b) validates the convergence rate requirement of

θ̂, ∥θ̂sk − θ∗sk∥L2(X) = o(n−1/4), to establish the normality of the proposed estimators µ̂DeDL(t) and

τ̂DeDL(t). The formal proof of Proposition 3 can be found in Appendix A.7. Importantly, the prob-

ability of failing to identify the true best arm vanishes as the sample size grows large. Therefore,

Proposition 3 establishes the valid inference for ATE and best-arm identification under our DeDL

framework. For the rest of this paper, we validate this framework with both experimental and

synthetic data and demonstrate its superior performance over commonly used benchmarks.

4. Application to Field Experiment Data

In this section, we conduct field experiments to test our theory. We apply our DeDL framework

to the experimental data from Platform O. The empirical results highlight that, in the presence

of unobserved treatment combinations, our approach more accurately estimates the ATE of any

treatment combination than the commonly used benchmarks, and more efficiently identifies the

optimal combination.

4.1. Field Setting, Experiments, and Data

To empirically validate our proposed framework, we collaborate with Platform O, which features

interactive short videos. Platform O is one of the largest short-video platforms that serves billions

of users globally every day. For Platform O, its users (referred to as “she” hereafter) may view the

short videos on different product pages. In our empirical analysis, we focus on three main pages of

Platform O. To better illustrate, we refer to similar pages on Tiktok: (i) the Discover Page (DP),
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(ii) the Live Page (LP), and (iii) the For You Page (FYP) (See Figure 4.). On the DP, the platform

generates trendy hashtags and videos based on users’ preferences. On the LP, users are exposed

to live streams. On the FYP, the platform recommends the best-performing videos (measured by,

e.g., total click-throughs, total watch time duration, like rate, and forward rate, etc.) that fit each

user’s idiosyncratic interest. Users of Platform O can easily switch to any of these pages at any

time they are using the platform.

(a) Discover Page (DP) (c) For You Page (FYP)(b) Live Page (LP)

Figure 4 An Illustration of Three Pages

Like all other large-scale UGC platforms such as Facebook and TikTok, Platform O simulta-

neously runs hundreds of A/B tests every day to evaluate and optimize its product designs and

recommendation algorithms. For most of these A/B tests, the platform’s main objective is to im-

prove user engagement, which can be well approximated by the amount of screen time a user

spends on the platform per day. Each experiment is randomized based on a distinct hash function

of user ids which ensures that the treatment assignment mechanisms from any two experiments

are independent. In this paper, we focus on a unique set of three A/B tests or treatments, each of

which examines the effect of a major adjustment to the video recommendation algorithm on one of

three main pages of Platform O (i.e., DP, LP, and FYP).6 There is one unique feature of this set

of experiments while the other sets of experiments on Platform O do not have: since these three

experiments focus on the same population, the outcomes of the users under all 23 = 8 possible

treatment combinations are all observable. The main reason that the algorithm team in Platform

6 For the sake of simplicity, we refer the changes of several parameters in recommendation algorithm as major adjust-
ment. In practice, the major adjustment could be adding weights for videos created by popular authors, increasing
exposure of live streams viewed by nearby users, changing the degree of diversity of videos in users’ feeds, and so on.



Ye et al.: Deep Learning Based Casual Inference for Combinatorial Experiments
Article submitted to Management Science; manuscript no. (Please, provide the manuscript number!) 17

O decided to test all three experiments on the same population is precise that they want to un-

derstand how much money they have left on the table by running each experiment independently

and not finding the best combination.

With this unique setting, we can use this set of experiments to quantify the ground-truth ATE of

any treatment combination, thus greatly facilitating our analysis to provide convincing validations

of our DeDL framework against commonly adopted benchmarks. Throughout our empirical analysis,

we use a three-dimensional binary vector T ∈ T := {0,1}3 to represent the (random) treatment

combination applied to a user, where the first component refers to whether the user is treated on

DP, the second refers to whether she is treated in on LP, and the third refers to whether she is

treated on FYP. Denote t ∈ T as the realization of T . For example, a treatment vector {1,0,0}
indicates that the user has received treatment on DP but is in the control group on LP and FYP.

This set of three experiments targeted 4,449,470 users in total between January 10, 2021 and

February 1, 2021. Throughout our analysis, we use the total screen time of all three pages per day

for each user as the outcome variable, consistent with the platform’s primary objective to boost

user engagement. To fully leverage the power of our DeDL framework, we have also collected the

pre-treatment covariate data for the users targeted by the experiments. The covariates adopted in

our analysis include 16 discrete variables (such as gender, frequent residence area, age range and

the user’s activeness degree) and 10 continuous variables (such as the video-watching duration on

each page per day in the 10 days right before the experiments). Table 5 (in Appendix B.1) gives a

detailed description of all the covariates used in our analysis.

For each experiment, any targeted user, regardless of her pre-treatment covariates, was indepen-

dently and randomly assigned to the treatment group (i.e., the new algorithm on the respective

page was applied) with the probability 0.6 and to the control group (i.e., the baseline algorithm

was applied) with the probability 0.4 in each experiment. Therefore, because all treatment assign-

ments are orthogonal, each targeted user with covariates X = x was assigned to the treatment

combination t∈ {0,1}3 with probability

ν(t|x) = P[T = t|X =x] =
3∏

k=1

(
0.4 · I[tk = 0]+0.6 · I[tk = 1]

)
.

The ATE under treatment combination t is simply the expected outcome y under t compared to

that under t0 = (0,0,0)′ over the same population X. For a fair comparison of ATEs over different

treatment combinations, we need to keep the user covariates similarly distributed under different

treatment combinations in T . Hence, we adopt stratified sampling to randomly select 2,066,606

users from those who are targeted by all three experiments.7 Specifically, based on the moments

7 Although in principle our randomization should guarantee balanced covariates, because there are many covariates
and some covariates’ distributions have long tails, the covariates are not in fact perfectly balanced across all 8
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and quantiles of the covariate distribution, we partition the covariate space into 69,111 strata, and

then randomly sample the same number of users whose covariates lie within the stratum for each

treatment combination. After the stratified sampling, we construct a new dataset that has about

258,325 users under each treatment combination (see Column (3) of Table 2) and hence 2,066,606

users in total. Hereafter, we call the data sample after stratified sampling the stratified sample,

and all the empirical analysis from now on is performed on the stratified sample. For the stratified

sample, it can be seen that P[Tk = 1] = P[Tk = 0] = 0.5 (k = 1,2,3), independently distributed for

different A/B tests. We detail the exact procedure of our stratified sampling in Appendix B.2.

To confirm the success of randomization among our stratified sample of users, we compare

users under different treatment combinations in their gender, activeness on the platform, frequent

residence area, pre-experiment active days, pre-experiment screen time of DP, LP and FYP, and

pre-experiment app usage duration. As we can see from Table 1, the seven treatment combinations

have similar proportions of male users, high-active users, and users from the south as the baseline

combination t0 = (0,0,0)′. Moreover, the summary statistics of the covariates during 10 days prior

to the experiments further assure that there is no significant difference between the average active

days, average page screen time, and average app usage duration of the users under seven treatment

combinations and those under baseline combination (all p-values > 0.05). Given the balanced

user demographic and pre-experiment behavior covariates under different treatment combinations

in our stratified sample, the difference between the outcome variables under different treatment

combinations should be attributed to the experimental interventions, i.e., the implementation of

new algorithms on different pages of Platform O. Furthermore, the randomization check reported

in Table 1 also demonstrates that the covariate distributions are fairly similar with respect to

different treatment combinations for the stratified sample, confirming that our DeDL framework

can be applied with validity.

Table 2 documents the ground-truth ATE of all treatment combinations on the total screen time

of all three pages per day benchmarked against the case where the baseline algorithm is applied in

all three pages (i.e., µ(t) for all t∈ T ). To protect the sensitive data of Platform O, we only report

the relative ATEs (see Columns (1) of Table 2). We emphasize that the orthogonal deployment

of these three experiments enables us to observe the ground-truth ATE of all seven treatment

combinations and, thus, to provide ground truth ATEs for us to validate our DeDL framework.

In order to validate our DeDL framework, we need to assume that some treatment conditions

are unobserved and use our framework to recover these “unobserved” conditions and compared

conditions. This leads to an inconsistency to (3) and the theoretical discussion (Proposition 2) if one directly use
sample means as the ground truth to validate the treatment effects. One solution would be to redefine treatment
effect and re-derive a rather complex new influence function which admit different covariate distributions, but we opt
for a simpler approach, the stratified sampling.
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Table 1 Randomization Check

Treatment Combination (0,0,0)′ (0,0,1)′ (0,1,0)′ (1,0,0)′ (1,1,1)′ (1,1,0)′ (1,0,1)′ (0,1,1)′

User De-
mographics

Proportion of 60.51% 60.63% 60.31% 60.49% 60.40% 60.36% 60.30% 60.31%
Male Users (0.41) (0.13) (0.85) (0.40) (0.26) (0.11) (0.15)

Proportion of 29.67% 29.65% 29.60% 29.73% 29.77% 29.65% 29.80% 29.66%
High-Active Users (0.88) (0.55) (0.62) (0.44) (0.85) (0.34) (0.91)
Proportion of Users 39.83% 39.64% 39.90% 39.80% 39.85% 39.68% 39.69% 39.74%

from the South (0.16) (0.63) (0.88) (0.90) (0.26) (0.29) (0.48)

User
Behaviors 10
Days Prior
to the
Experiments

Average Active 6.2517 6.2466 6.2564 6.2489 6.2450 6.2494 6.2577 6.2575
Days per User (0.68) (0.71) (0.82) (0.59) (0.85) (0.63) (0.64)

Average DP Screen 0.0173 0.0144 0.0151 0.0152 0.0140 0.0145 0.0152 0.0157
Time per User (0.31) (0.45) (0.46) (0.25) (0.34) (0.46) (0.58)

Average LP Screen 0.0126 0.0091 0.0146 0.0104 0.0136 0.0145 0.0103 0.0159
Time per User (0.21) (0.49) (0.42) (0.75) (0.52) (0.42) (0.25)

Average FYP Screen 0.0048 0.0022 0.0033 0.0044 0.0010 0.0033 0.0015 0.0024
Time per User (0.36) (0.62) (0.91) (0.18) (0.61) (0.25) (0.41)

Average App Usage 0.0129 0.0111 0.0114 0.0114 0.0104 0.0103 0.0120 0.0117
Duration per User (0.55) (0.62) (0.61) (0.39) (0.37) (0.76) (0.69)

Note: p-values of t-tests between the baseline combination (0,0,0)’ and other treatment combinations are reported in the
parentheses. To protect sensitive data, the reported metrics of all screen time and app usage duration are rescaled.

Table 2 Ground-Truth ATE and Best-Arm Identification of 8 Treatment Combinations

Treatment Relative Effect Size Observed or Not Number of Users
Combination (1) (2) (3)

(0, 0, 0) -0.000%∗∗∗∗ Observable 258,249
(0, 0, 1) -1.091%∗∗∗∗ Observable 258,340
(0, 1, 0) -0.267%∗∗∗∗ Observable 258,367
(1, 0, 0) -0.758%∗∗∗∗ Observable 258,321
(1, 1, 1) -2.121%∗∗∗∗ Observable 258,375
(1, 1, 0) -0.689%∗∗∗∗ Unobservable 258,480
(1, 0, 1) -2.299%∗∗∗∗ Unobservable 258,305
(0, 1, 1) -1.387%∗∗∗∗ Unobservable 258,172

Note: To protect the sensitive data, ATE are proportionally rescaled to relative effect size. The optimal treatment combination
(i.e., best-arm) is t∗ = (1,0,1)′. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001.

our results with the ground truth. In practice, different engineer and product teams launch the

individual experiments independently (most likely in an asynchronous and uncoordinated fashion),

and the centralized platform manager runs a back-test to check the treatment effect of the combined

experiment (i.e., t = (1,1,1)′) at the end. Following this business practice, we assume that the

outcomes are observable for the baseline case, the three individual experiments, and the combined

experiment, and unobservable otherwise (see Column (2) of Table 2). We denote To := {t ∈ T :

t1 + t2 + t3 = 0,1,3} as the set of observable treatment combinations and Tu := {t ∈ T : t /∈ To} as

the set of unobservable treatment combinations. Table 2 shows that the ground-truth ATE of some

unobserved treatment combination (e.g., t= (0,1,0)′) is insignificant (at α= 0.05).

4.2. DeDL Framework on Experimental Data

In this subsection, we present the key steps in applying our DeDL framework to estimate and infer

the ATE of each treatment combination (i.e., µ(t) = E[H(X,θ(X); t, t0)] defined by Eqn. (3) for
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Figure 5 Structure of Deep Neural Network used in Empirical Analysis

all t ∈ T ), whose ground-truth value is documented in Table 2 Column (1). The implementation

details are provided in Appendix B.3. First, we consider the following model specification of DGP:

E[Y |X =x,T = t] =G(θ(x), t) =
θ4

1+ exp(−(θ0(x)+ θ1(x)t1 + θ2(x)t2 + θ3(x)t3))
. (6)

Note that the link function G, as a sigmoid function, can capture either “diminishing marginal

return” or “increasing marginal return” of the experiments for different users, both of which we

have observed in our data sample (see Figure 1). Here, we are using a simplified version of the

Generalized Sigmoid Form II (Assumption 1(d)) to avoid overfitting. The parameter θ4 can be

thought as the maximum possible video-watching time of any user.

We use two DNNs with three hidden layers per network (20 nodes in each layer) to approximate

the parameters θ0(·) and θk(·), for k ∈ {1,2,3}, respectively. For each layer, ReLU function (i.e.,

(x) = max{0, x}) is used as the activation function. We then concatenate the last layers of two

DNNs, take the concatenation layer as the input of a sigmoid function layer, and add another

linear layer to obtain θ̂4, and finally pass all θk(·) into a sigmoid layer to predict the outcome

variable y. We illustrate our DNN architecture by Figure 5. Following traditional deep learning

literature (some citation), we implement our DNN in Tensorflow, use the Adam optimizer (Kingma

and Ba 2014) with stochastic gradient descent to train our DNN on the stratified sample, and

employ the mean squared loss, ℓ(y, t,θ(x)) = (y−G(θ(x), t))2, as our loss function. The detailed

implementation of our training in Python can be found in Appendix B.3.

After obtaining the fitted estimator θ̂(·), we estimate and infer the ATE of each treatment

combination t using the stratified sample with our fitted influence function ψ(z, θ̂, Λ̂; t, t0) defined

by Eqn. (5). More specifically, we apply the estimators µ̂DeDL(·) and ĈIDeDL(·;µ) defined by Eqn. (23)
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and (25) to the stratified sample under each (observable or unobservable) treatment combination

t ∈ T to obtain the estimated value and confidence interval of µ(t). We remark that Λ̂(x) as the

estimator of Λ(x) = E[ℓθθ(Y,T ,θ(X))|X = x] can be directly evaluated once θ̂(·) is obtained,

because the distribution of the treatment combination T is known. See Appendix B.3 for details.

Finally, we apply our DeDL framework to identify the treatment combination with the highest

ATE, t∗ := argmax
t∈T

µ(t). More specifically, we identify the “best-arm” as t̂∗DeDL := argmax
t∈T

µ̂DeDL(t).

Define µ̂∗
DeDL := max

t∈T
µ̂DeDL(t) as the ATE of the best-arm estimated by our DeDL framework. We

apply the estimators τ̂DeDL(·) := µ̂∗
DeDL − µ̂DeDL(·) and ĈIDeDL(·; τ) defined by (26) and (29) to each

treatment combination t∈ T and select the treatment combination(s) t∗ with τ̂DeDL(t
∗) insignificant

from 0.

4.3. Benchmarks

To evaluate the performance of our DeDL framework to (i) estimate and infer ATE and (ii) identify

the optimal treatment combination, we consider four commonly used approaches as benchmarks:

(a) the linear addition (LA) approach; (b) the linear regression (LR) approach; (c) the pure deep

learning approach (PDL); and (d) the structured deep learning (SDL) approach. The implementa-

tion details of all four benchmarks are presented in Appendix C.

The LA approach assumes that ATE is linearly additive (i.e., µ(t1 + t2) = µ(t1) + µ(t2) for any

t1, t2 ∈ T ) and, thus, predicts the ATE of an unobservable treatment combination using those of

the observable individual experiments. This approach is intuitive, convenient, and scalable, thus

widely adopted by most of the large-scale online platforms in practice such as Platform O. The

standard error of an LA estimator for any treatment combination is estimated by assuming that

the estimators for individual experiments are independent. For best-arm identification, the LA

approach is equivalent to selecting all treatments that have a positive significant ATE.

Under the LR approach, we first predict the unobservable outcomes using a linear regression

model trained on the observed sample by regressing the outcome y on t and x. The estimation

and inference of ATE for each treatment combination t is based on the pair-wise t-test between

the outcome predictions under t and those under the baseline combination t0. The LR approach

identifies the best arm by selecting the treatment combination with the highest ATE based on the

predicted outcomes of all treatment combinations. We remark that both the LA and LR approaches

inherently assume that the treatment effects are linearly additive and homogeneous.

The PDL approach employs a DNN with a similar structure as DeDL that predicts the outcome

variable y as a function of both x and t. Unlike DeDL that has concrete link function to describe

the relationship of t to y conditional on x, PDL treats both x and t as network inputs and in turn

allows more flexible relationship from t and x to y. The PDL approach uses the same pair-wise
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t-test as the LR approach on the predicted outcomes for inference of ATE. The identification of

the best arm depends on the highest ATE among all treatment combinations. The PDL estimator

fully leverages the predictive power of DNN (potentially more powerful than DeDL which assumes

a concrete link function) but cannot use the influence function to debias the DL estimation as

DeDL does. Therefore, the comparison between PDL and DeDL provides insights into the trade-off

between the flexibility of DL models and the ability to construct influence function and debias.

The SDL approach is exactly the same as the DeDL approach with only one distinction: Unlike

DeDL that uses the influence function to debias the estimation from DL, the SDL approach simply

uses the prediction from the DL (µ̂(t) = 1
n

∑n

i=1H(xi, θ̂(xi); t, t0)) as the estimator. Similar to the

LR and PDL estimator, the SDL approach estimates and infers the ATE for each treatment combi-

nation t by running the pair-wise t-test on the predicted outcomes. Likewise, the optimal treatment

combination is identified as the one with the highest ATE based on the predicted outcomes of

all treatment combinations. The comparison between SDL and PDL reveals the trade-off between

economic interpretations and predictive power, whereas that between SDL and DeDL highlights

the value of bias correction in our framework.

For any approach π ∈ {LA,LR,PDL,SDL,DeDL}, we use µ̂π(t) (resp., ĈIπ(t;µ)) to denote the

ATE estimator (resp., the confidence interval of µ̂π(t)) generated by π for the treatment combi-

nation t ̸= t0. Likewise, we denote τ̂π(t) (resp., ĈIπ(t; τ)) to denote the estimator for the ATE

difference between the optimal arm t∗ and the experiment combination t ̸= t0 (resp., the confidence

interval for such ATE difference) generated by π.

4.4. Results on ATEs

We first compare the DeDL approach with the four benchmarks presented in Section 4.3 to esti-

mate and infer the ATE of each “unobserved” treatment combination t∈ T u. As discussed above,

the assignment mechanism of the three experiments on Platform O enables the observation the

ground-truth ATE of each treatment combination, based on which we assume that three treatment

conditions are not observed by the algorithm and evaluate the performance of all approaches on

these unobserved conditions. In particular, we document the following performance metrics:

• Correct Direction Ratio (CDRu). For any estimation and inference approach π, we denote

T cd(π) as the set of all treatment combinations with correct direction identification, i.e., the

treatment combinations t∈ T whose ground-truth ATE µ(t) have been correctly identified by

π in terms of both (i) sign and (ii) statistical significance. Define T cd
u (π) := T cd(π)∩Tu as the

set of unobservable treatment combinations with correct direction identification for π. The

CDR for unobservable treatment combinations (CDRu) of π as CDRu(π) =
|T cd

u (π)|
|Tu| × 100%.
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Table 3 Comparison of Different Estimators of ATE

Estimator Unobserved Treatment Combinations

CDRu MAPEu MSEu MAEu
(1) (2) (3) (4)

LA 2/3 30.06% 18.597 4.032
LR 2/3 04.90% 5.303 1.855
PDL 2/3 06.86% 4.876 1.838
SDL 2/3 14.71% 5.623 2.271
DeDL 3/3 01.75% 4.095 1.343

Estimator All Treatment Combinations

CDR MAPE MSE MAE
(5) (6) (7) (8)

LA 7/8 12.02% 7.966 1.728
LR 7/8 17.37% 6.551 2.348
PDL 6/8 14.76% 4.962 2.031
SDL 6/8 14.03% 3.840 1.804
DeDL 8/8 03.07% 1.845 0.737

Note: The calculation of MSE, MSEu, MAE, and MAEu are based on the scaled outcome variable (see Table 2, Column
(1)). MSE and MSEu are scaled by multiplying a constant. MAE and MAEu are scaled by multiplying another constant.

• Mean Absolute Percentage Error (MAPEu). The MAPE of any estimation and inference

approach π is the average percentage error for unobserved treatment combinations with a

significant ground-truth ATE. In other words, the MAPE of π for unobservable treatment

combinations (MAPEu) is defined as MAPEu(π) :=
1

|T s
u |

∑
t∈T s

u

|µ(t)−µ̂π(t)|
|µ(t)| × 100%.

• Mean Squared Error (MSEu). The MSE of π for unobservable treatment combinations (MSEu)

is defined as 1
|Tu|

∑
t∈Tu

(µ(t)− µ̂π(t))
2.

• Mean Absolute Error (MAEu). The MAE of π for unobservable treatment combinations

(MAEu) is defined analogously as 1
|Tu|

∑
t∈Tu

|µ(t)− µ̂π(t)|.

To give a clear picture of the comparisons among all 8 (observable and unobservable) treatment

combinations and identify the best arm of them (see Section 4.5), we present the estimated treat-

ment effects of all arms in Figure 6. We also calculate the above 4 metrics evaluated on both

unobserved treatment combinations and all treatment combinations in Table 3.

Table 3 documents the comparison of our DeDL approach against the LA, LR, PDL and SDL

benchmarks with respect to the 4 performance metrics described above. The punchline message of

the empirical analysis is that our DeDL estimator substantially outperforms all 4 benchmarks with

any of these performance metrics, providing evidence that the proposed framework to accurately

estimate and infer the ATE of any treatment combination for multiple A/B tests on a large-scale

online platform. More notably, we highlight that, to our best knowledge, this is the first rigorous

empirical validation of the DML methodology in a practical setting with data from large-scale field

experiments. As emphasized above, the unique concurrent orthogonal-design deployment of the

three experiments on Platform O has made such validation possible by revealing the ground-truth

ATE of each possible treatment combination. A key advantage of our DeDL approach to adopt

DL in causal inference is its ability to capture the user-heterogeneity and non-linearity for the

combined treatment effect of multiple A/B tests on a large-scale online platform, the observation

of which has motivated this study (see Figure 1). As expected, such an advantage stems from the

strong predictive power of deep neural networks.
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As aforementioned, the comparison between our DeDL framework and the SDL estimator provides

more insights into how bias correction (i.e., influence function) affects the final causal inference

performance. To provide more insights, in Figure 6, we visualize these two approaches’ ATE esti-

mates and the 95%-confidence interval for each treatment combination (i.e., µ̂π(t) and ĈIπ(t;µ)

for π ∈ {SDL,DeDL} and t∈ T ). Figure 6 shows that the bias correction can help causal inference

in two significant ways: First, by correcting the bias due to the variabilities of the training data

from the plug-in estimator, the DeDL approach is able to accurately identify the confidence interval

of the ATEs while the SDL approach is always underestimating the standard error of ATE. This

means that, without bias correction, the analysis leads to potentially more Type-I errors and higher

false discovery rates for the platform. Second, DeDL provides a more accurate ATE estimate than

SDL does, empirically confirming the advantage of the former for more accurate causal inference.

Moreover, the comparison between SDL and PDL in Table 3 shows that the pure DNN without

assuming the link function can improve the performance of predicting the treatment effects (i.e.,

MAPEu reduced from 14.71% to 6.86%). This shows that, by using a concrete link function, we

indeed sacrifice some prediction accuracy for the ability of deriving bias correction terms and mak-

ing economic interpretation. However, since the performance of our DeDL estimator significantly

outperform that of the PDL approach in all metrics, it shows that this sacrifice is justified in the

context of causal inference. In other words, the benefit of assuming a concrete link function and

use the corresponding bias correction will overweight the cost of not being able to describe a more

flexible relationship between the treatment conditions and the outcome.

Last, we also compare the estimation MAPE of the DeDL estimator with SDL and LR estima-

tors under increasing DNN training epochs in Figure 7. As is clear by Figure 7, both DeDL and

SDL estimators yield smaller MAPE as DNN training loss is smaller (i.e., mean squared loss). We

highlight that when DNN is poorly trained (i.e., within 100 epochs), the DeDL and SDL estimators

have similar estimation MAPE, which are dominated by the LR estimator. In this case, we do

not benefit from the debias term of DML. However, as the DNN converges, DeDL starts to show

significant advantages in estimation accuracy compared to both SDL and LR estimators. This phe-

nomenon is well-connected to the classical semi-parametric statistics literature, which requires the

convergence rate of the estimated parameter functions θ(·) sufficiently fast to obtain asymptoti-

cally unbiased estimators of the treatment effects (e.g., Chernozhukov et al. 2018). Finally, Figure

7 is also translated into an important actionable insight when adopting our DeDL framework that

the DNN training error can be a useful indicator for the quality of the second-stage estimation and

the effectiveness of the debiasing via DML.
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Figure 6 Detailed Comparisons between the SDL and DeDL Estimators. The bars represent confidence
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4.5. Results on Best-Arm Identification

This subsection is devoted to applying our DeDL framework to identifying the optimal treatment

combination with the highest ATE. By the ground-truth ATE estimates (Table 2 Column (1)), the

“true” optimal treatment combination is t∗ = (1,0,1)′. We compare different estimators for best-

arm identification in Table 4 and report the same set of performance metrics defined in Section

4.4. In particular, we focus on the comparison between τ(t) and τ̂(t). Table 4 shows that that

DeDL estimators significantly outperform the LA, LR, PDL, and SDL benchmarks with respect to

all performance metrics in identifying the best treatment combination.

In summary, both Table 3 and 4 provide clear empirical evidence that our proposed DeDL

estimator outperforms all other approaches in estimating the ATEs of unobserved conditions and

identify the best treatment conditions. We highlight that this is among the first works to empirically

investigate the accuracy of the DML framework to recover the ground-truth treatment effects
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Table 4 Comparison of Different Estimators of Best-Arm Identification

Estimator CDR MAPE MSE MAE
(1) (2) (3) (4)

LA 7/8 21.92% 15.539 3.091
LR 7/8 11.86% 3.232 1.727
PDL 7/8 12.83% 4.053 1.839
SDL 8/8 17.45% 7.186 2.442
DeDL 8/8 05.97% 1.995 0.780

Note: The calculation of MSE and MAE are based on the scaled outcome variable (see Table 2, Column (4)). MSE is scaled
by multiplying a constant. MAE is scaled by multiplying another constant.

through large-scale field experiments. Our empirical evidence also sheds light on how crucial bias

correction is in estimating the causal effects and provides insights into the trade-off between more

flexible models and the ability to derive bias correction terms. Last but not least, we demonstrate

that specifying and training a good MLmodel can be essential for second-stage inference. Indeed, we

have carefully tailored the model structure, through the model layer of our DeDL framework, to the

multiple-experiment problem, which leads to much-improved performances over an unstructured

DL model. Consistent with the notorious difficulties of training DL models in the literature and

practice, fine-tuning our model involves significant efforts.

5. Synthetic Experiments

In this section, we perform several synthetic experiments to gauge the robustness of our approach

under different scenarios. We first validate our theory by varying the number of experiments m ∈
{4,6,8,10} in Section 5.1. Then, we investigate several factors that might impact the performance

of DeDL estimators in practice. In Section 5.2, we test the performance of our DeDL ATE estimators

with a potentially large bias of estimating θ̂(·) and find that DeDL is fairly robust with moderate

biases. We also systematically assess the performance of our method under model misspecification

and shed light on how to test and select the link function in practice in Section 5.3. Furthermore,

due to the page constraint, in Appendix D.4), we investigate a practical setting where the observed

X distribution deviates from the population and discuss how to use the rebalancing method to get

trustworthy estimates.

Simulation Setup. Throughout Sections 5.1 and 5.2, we assume that the link function G is

correctly specified. Consistent with our empirical study in Section 4, we use the Generalized Sigmoid

Form II, i.e., for each data point i, we have

yi =
θ∗m+1

1+ exp(θ∗0(xi)+ θ∗1(xi)ti1 + θ∗2(xi)ti2 + · · ·+ θ∗m(xi)tim)
+ ϵi, (7)

where ϵi is the i.i.d. random noise with zero mean.

We assume that there arem concurrent field experiments, each with a binary treatment. We sam-

ple θ∗m+1 from the uniform distribution U(10,20) throughout, while generating θj(x), j = 0,1, . . . ,m,
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differently in different subsequent sections. We generate data points zi = (yi,x
′
i, t

′
i)

′ as i.i.d. copies

of the random vector Z = (Y,X ′,T ′)′. The random perturbation ϵ follows a uniform distribution

U(−0.05,0.05). Without loss of generality, we generate covariates x as follows: (1) the dimension of

covariates X satisfies dX = 10; (2) the different components of X are i.i.d. following the uniform

distribution U(0,1). We remark that larger random perturbations, higher dimensional covariates

and/or more complicated joint distributions of X can be easily incorporated into the simulation.

We adopt the current setting for ease of model training and efficiency of experiments.

To ensure that the identifiability and sufficient curvature conditions (i.e., Assumption 4) are

met, we adopt the following treatment assignment mechanism ν(· | ·). We assume the independence

between X and T , whose distribution we denote as ν(t) = P[T = t]. Furthermore, in the training

stage, with equal probability, we randomly assign each experimental unit to one of m+2 different

treatment combinations with equal probability, i.e., ν(t) = 1/(m+2) if t ∈ {t ∈ {0,1}m :
∑m

i=1 ti =

0 or 1}∪{(1,1,0, . . . ,0)′} and ν(t) = 0 for other treatment combinations. In other words, we assume

the partially observed outcome setting with only m+ 2 observable treatment combinations while

other treatment outcomes are masked for gauging the performance of estimators.

Our neural network structure to estimate θ∗j (x), j = 0,1, . . . ,m is pre-specified as two-layer

perceptrons with ReLU activation functions and 10 nodes in hidden layers in all experiments

throughout this section. Because there are m+ 2 unknown parameters, which linearly scale with

the number of experiments m, we generate 500m i.i.d. experimental data points zi for the DNN

training, and another independent 500m experimental data points for the inference stage. During

the DNN training stage, we randomly split this data set with 70% for training and the rest 30%

for cross-validation. We adopt the MSE loss function and Adam algorithm (Kingma and Ba 2014).

In most experiments, we stop training when the loss on cross-validation data is less than a fixed

threshold of 0.3. We empirically tested various thresholds and found that the gain from a smaller

stopping threshold is marginal and, thus, pick this threshold based on the computational efficiency

consideration. In the experiments with misspecified link functions and imbalanced data that will

be discussed later, the cross-validation loss tends to increase. Hence, we adjust the threshold

accordingly in such cases. We also experiment with popular training strategies such as dropout or

regularizing the weights, but the gain is marginal so we do not include them in this discussion.

At the inference stage, we independently generate a data sample with the same size as the training

data. To avoid the rare case where the empirical estimate Λ̂(x) is not invertible (e.g., θi(x) = θj(x)

for all i, j ∈ {1,2, . . . ,m}), we add a small regularization to Λ̂(x) so (Λ̂(x) + 0.0005Idm+2
)−1 is

well-defined. Similar regularization or trimming techniques based on the propensity score are quite

common in practice for numerical stability.
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To calculate the true ATE over the population, we use the sample average approximation with

10,000 independent samples. We also use the standard t-test with a significance level 0.05 to

determine if the ATE of an experiment combination is statistically significant. To derive statistical

metrics such as confidence intervals, all synthetic experiments are replicated 200 times.

5.1. Validation of the DeDL Estimator

In this subsection, we aim at empirically validating the theoretical results in Section 3 and further

demonstrating the superior performance of our DeDL estimator in practice. Such experiments are

necessary due to the gaps between theory and practice. In particular, there are two potential

inconsistencies between the underlying theory (e.g., see Section 3) and practical settings. (a) The

key theoretical result Proposition 1 is proved under the assumption that one obtains the estimator

θ̂(x) by (almost) minimizing the empirical loss. However, the loss of DNN is difficult to optimize

globally, especially given our novel structured architecture with a model layer. (b) The theoretical

DNN width O(ndX/2(p+dX ) log2 n) and depth O(logn) required in Proposition 1 are clearly too

large for practical applications. Practitioners often fine-tune these hyperparameters at a much

smaller scale. Given these practical issues, we find it necessary to conduct numerical experiments

in addition to the field experiment to demonstrate the performance of DeDL in general settings.

To generate the functions θ∗(x) in this subsection, we first define the coefficient matrix A ∈
R(m+1)×dX with each component independently drawn from the uniform distribution U(−0.5,0.5)

and write the j the row of A as row vector A[j]. Then, we let θ∗j (x) = (A[j+1]x)
3, j = 0,2, . . . ,m.

As mentioned, the parameter θ∗
m+1 is randomly generated from the uniform distribution U(10,20).

To facilitate numerical experiments, we choose a relatively simple structure for the neural network

as discussed previously. However, more complex function θ∗(x) can be readily incorporated and

tested in our synthetic experiments, and DNN training related hyperparameters, e.g., width, depth,

training algorithm, etc., should be fine tuned to accommodate in such cases.

In Figure 8(a), we evaluate the performance of different estimators including LA, LR, PDL, SDL

and DeDL with varying numbers of A/B tests, i.e., m∈ {4,6,8,10}. We train these estimators with

partially observed outcomes as discussed above. In Appendix D.1, we report complete simulation

results in Table 8 and Table 9, along with a more detailed discussion. The performance of MAE is

highly correlated with other performance metrics, so to keep the discussion simple, we mainly report

and visualize the performance comparison under MAE along with the 95% confidence interval,

shown in Figure 8. The confidence interval is computed using the 200 instances for each parameter

combination. One can observe from panel (a) that DeDL has the best performance under all m ∈
{4,6,8,10}. Increased values of m lead to quick degradation of the performance of LA and LR. Such

simple models relying on linear extrapolation are unable to capture the rich treatment effects, but

the performance of SDL and DeDL are relatively stable.
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Figure 8(b) displays the performance of different variants of PDL estimators under different m

values. For a better visualization, we report the performance of PDL estimators with a different scale

on the y-axis than that in (a). Among these different PDL estimators, we use subscripts s (small)

and l (large) to represent different widths of neural nets, with 10 and 40 hidden nodes for all three

hidden layers, respectively. All DNNs have three linear layers followed by ReLU activation layers.

The subscripts p and a represent the training samples generated from partially observed treatments

and all treatments, respectively. For a fair comparison to SDL and DeDL estimators, we focus

on PDL s p with partially observed treatments and a similar DNN size to SDL. We observe that,

with partially observed combinations, both PDL s p and PDL l p perform poorly, mainly driven

by the bad performance under the unobserved treatments. Increased network size does not help

much. However, when we incorporate data from all treatment combinations for training, estimators

PDL s a and PDL l a obtain comparable performance with the best estimator DeDL. Therefore, a

structured DNN model allows us to capture the interaction of experiments in practical settings,

while the model flexibility in PDL only helps in unrealistic scenarios where a large proportion of

experimental combinations are observed. We refer interested readers to Appendix D.1 for more

detailed comparisons, discussions, and additional simulations of incorporating regularizers into

PDL.

Because all performance metrics show similar patterns under different m values, in all exper-

iments in subsequent sections, we maintain m = 4 for computation efficiency. Also, due to the

inferior performance of PDL with partially observed treatments, we do not report its performance

in the following sections.

5.2. Robustness to DNN Convergence Rate

As pointed out by the semi-parametric estimation literature (e.g., Chernozhukov et al. 2018), in

practice, it is sometimes questionable whether DNN estimators θ̂(·) can achieve the o(n−1/4) con-

vergence rate required for the inference stage. To systematically illustrate the performance of the

debiasing technique in learning the treatment effects in combinatorial experiments, we artificially

control the biases in DNN estimators to evaluate the impact of such biases in the second-stage

inference. Specifically, we use an approach with a similar spirit to Chernozhukov et al. (2018) by con-

structing θ̂(x) with manually controlled biases. First, parameter functions are defined as θ∗j−1(x) =

A[j+1]x, for j = 0,1, . . . ,m, where each component in the coefficient matrix A∈R(m+1)×dX is gen-

erated under independent and uniform distribution U(−0.5,0.5). The parameter θ∗
m+1 is randomly

generated from the uniform distribution U(10,20). Next, instead of training a DNN for estima-

tion, we manually set the biased estimator θ̂j(x) = (1 + errj)θ
∗
j (x), j = 0,1, . . . ,m+ 1, where all

errj, j = 0,1, . . . ,m+1 terms independently follow the uniform distribution U(−δ, δ). We set differ-

ent levels of the bias range coefficient δ ∈ {0.1,0.2,0.3} to investigate the effectiveness of DeDL with
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Figure 8 MAE comparison among estimators under the increasing number of experiments m values. Panel (a)

shows the performance of LA,LR,SDL, and DeDL. Panel (b) presents the performance of PDLs with different

network size specifications and partially/fully observed data.

different levels of biases the estimators θ̂. In the following discussion, we focus on the MAE per-

formance metric, and we refer interested readers to Appendix D.2 for a more detailed comparison

and discussion.

As documented in Figure 9, DeDL has much smaller MAEs than SDL, implying a significant

performance improvement with adding de-bias term. In all settings, DeDL performs better than

LA and LR despite that SDL may generate MAEs much larger than LA and LR, in particular

when δ = 0.3. This shows that the DeDL estimator is fairly robust with moderate biases in θ̂.

However, we also point out that when the bias from training is large, debiasing may not improve

the performance, as we illustrated in Figure 7 in Section 4. In our simulation, we have a similar

observation that, when δ increases to 1.0, DeDL may perform worse than SDL under the MAPE

metric. In such cases, it is critical to improve DeDL by training a better DNN model, for example,

through using a larger network.

5.3. Link Function Misspecification

In this subsection, we first investigate how a misspecified link function impair the effectiveness of

our debiased estimator. Indeed, a key assumption of our framework is that the link function G is

correctly specified. In practice, however, it can be challenging to select the best link function. On

the positive side, as we will discuss, one may test the efficacy of the link function by checking the

cross-validation errors in the DNN training stage.
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Figure 10 MAE Comparison Under Link Function

Misspecification

For this subsection, we adjust our true DGP as,

yi =
θ∗m+1

1+ exp(θ∗0(xi)+ θ∗1(xi)ti1 + · · ·+ θ∗m(xi)tim)
+ γ

(
β∗
0(xi)+β∗

1(xi)ti1 + · · ·+β∗
m(xi)tim

)
+ ϵi,

(8)

where parameter functions are defined as θ∗j−1(x) =A[j+1]x, and β
∗
j (x) =B[j]x, for j = 0,1, . . . ,m.

The parameter γ ≥ 0 captures to what extent the true link function deviates from the Generalized

Sigmoid Form II, which we still adopt in our DeDL framework for estimating the treatment effect.

The larger the γ, the more misspecified our model is. We generate both the coefficient matrices

A ∈ R(m+1)×dX and B ∈ R(m+1)×dX with independent entries and each component follows the

uniform distribution U(−0.5,0.5). The parameter θ∗
m+1 is again randomly generated from the

uniform distribution U(10,20).

We run synthetic experiments under different levels of model misspecification γ ∈ {0,1,3,5}. To

illustrate how the link function is skewed, we plot in Figure 11 the histograms of outcome y in

Eqn. (8). The x-axis represents the experimental outcome y among the whole population in all

2m treatment combinations with equal probability. Observe that when γ is large, e.g., γ = 5, the

bias from using the sigmoid link function to approximate the experimental outcome is likely to be

significant. For example, positive θm+1 cannot capture the negative y.

Here we plot the comparison between different methods under model misspecification in Figure

10, while the complete simulation results are reported in Appendix D.3. This comparison reals

that when the link function is more specified (i.e., larger γ), SDL and DeDL estimators perform
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Figure 11 Experimental Outcome of Misspecified Model

substantially worse, whereas the performances of the LA and LR estimators are relatively stable.

Indeed, the LA and LR estimators do not face any significant increases in MAPE as γ gets larger.

Also, when γ is increased to 5, DeDL performs worse than SDL, implying that debiasing via Neyman

orthogonality hurts the performance when the link function is not correctly specified.

In practice, however, it is difficult, if not impossible, to verify the true link function. Fortunately,

one may detect link function misspecification through large in-sample validation errors. In other

words, we can resort to checking the cross-validation errors in the DNN training stage. To shed

light on this point, we report the in-sample validation errors from our experiments. Specifically, we

compare the errors induced by pure DNN without a sigmoid link function (a three-layer perceptron

in our case) and structured DNN (a two-layer perceptron followed by a link function layer), re-

spectively. Note that pure DNN takes treatment level t̃ together with covariates x as inputs to the

first linear layer. In contrast, the structured DNN only takes covariates x to the first linear layer

and uses treatment level t̃ in the final link function layer. For a fair comparison, we set the pure

DNN structure with a similar width and depth, i.e., (dx+dt+1)–10–ReLU–10–ReLU–10–ReLU–1.

Equipped with higher flexibility, pure DNN can better approximate individual responses in the par-

tially observed treatment combinations, if indeed the link function is severely misspecified. Hence,

we can use the pure DNN as a benchmark for the in-sample comparison to check whether the link

function is reasonable. Adopting the same Adam training algorithm and training samples, we ob-

tain the following 95% CIs of cross-validation mean squared errors under different misspecification

levels: 1) [0.044,0.053], [0.086,0.112], [0.116,0.159], [0.142,0.197] for pure DNN under γ = 0,1,3,5

respectively; 2) [0.012,0.014], [0.019,0.026], [0.076,0.106], [0.215,0.279] for structured DNN under

γ = 0,1,3,5 respectively. One can observe that when γ ∈ {0,1,5}, the structured DNN has a smaller

or comparable in-sample loss than the pure DNN, which indicates the reasonable performance of

the generalized sigmoid link function to approximate the outcome variable. However, when the

misspecification level γ = 5, the in-sample error from the generalized sigmoid form grows larger
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that of the pure DNN. Correspondingly, in Figure 11, we observe severe performance degradation

for both SDL and DeDL and a significant negative impact from the debiase term. In this case, we

suggest experimenting with a different link function in the first DNN training stage and/or not

using the debiased estimator. More generally, as long as the in-sample loss of the structured DNN

is on par with that of a pure DNN with similar depth and width, we recommend adopting this

structured DNN with debiasing.

6. Conclusion

In this paper, we leverage the DeDL framework to infer treatment effects for concurrent experiments

and identify the best treatment combination. We show the superior performance of our method

using data from three A/B tests on a large-scale platform. We also demonstrate the robustness of

the DeDL method through synthetic experiments. Our framework can also be applied to analyze

the individual heterogeneity of treatment effects with observational data under unconfoundedness.

We close our paper by discussing several future directions. First, for multi-level discrete and

continuous treatments, though our link functions can still be applied, researchers can design more

flexible link functions that better fit the richer treatment assignment mechanisms for the identi-

fication and convergence of parameter functions. Second, combining the current framework with

classical causal inference methods such as instrumental variables and difference-in-differences could

lead to some interesting future work.
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Online Appendices
Appendix A: Technical Details

A.1. Regularity Assumptions

The following regularity assumption is made throughout the theoretical analysis of this paper.

Assumption 3. (a). zi = (yi,x
′
i, ť

′
i)

′, 1 ≤ i ≤ n, are i.i.d. copies from the population random variables

Z = (Y,X ′,T ′)′ ∈Y × [−1,1]dX ×{0,1}m, where Y is the bounded support of the outcome Y .

(b). The parameter function θ∗(x) is uniformly bounded. Furthermore, θ∗k(x) ∈ W p,∞([−1,1]dX ), k =

1,2, . . . , dθ, where for positive integers p, define the Hölder ball W p,∞([−1,1]dX ) of functions h :RdX 7→
R with smoothness p∈N+ as,

W p,∞([−1,1]dX ) :=
{
h : max

r,|r|<p
ess sup

v∈[−1,1]dX

Drh(v)≤ 1
}
,

where r= (r1, . . . , rdX ), |r|= r1 + · · ·+ rdX and Drh is the weak derivative.

We remark that Assumption 3(a) implies that the DGP is uniformly bounded whereas Assumption 3(b)

ensures that the ground-truth parameter functions are uniformly bounded, and enjoy sufficient smoothness

so they can be accurately approximated by DNNs. The smoothness assumptions (see, also, Assumption 2 in

Farrell et al. 2020) are critical to deriving the sufficiently fast convergence rate of the estimator θ̂(·).
We also make the following assumption throughout our analysis to ensure the identifiability and sufficient

convergence rate. Let t(S) = (t1(S), . . . , tm(S))′ ∈ {0,1}m denote the treatment assignment such that ti(S) =

1{i∈ S}, where S ⊂ {1,2, . . . ,m}, and define T̃ := (1,T ′)′.

Assumption 4. (a) Uniformly for all x, E[T̃ T̃ ′|X =x]≻ 0.

(b) Any of the following conditions hold:

(i) G(·, ·) is of the Multiplicative Form;

(ii) G(·, ·) is of the Standard Sigmoid Form;

(iii) G(·, ·) is of the Generalized Sigmoid Form I, E[TT ′|X =x]≻ 0, |θ∗m+1(x)|> 0, and ν(t(∅)|x)> 0;

(iv) G(·, ·) is of the Generalized Sigmoid Form II, |θ∗m+1(x)| > 0, and there exists a triplet

(i, S1, S2) (i ∈ {1, . . . ,m}, S1, S2 ⊂ {1,2, . . . ,m}) such that i /∈ S1, i /∈ S2, S1 ̸= S2, and ν(t(S1 ∪
{i})|x) · ν(t(S1)|x) · ν(t(S2 ∪ {i})|x) · ν(t(S2)|x) > 0, and |G(θ(x), t(S1 ∪ {i}))G(θ(x), t(S2)) −
G(θ(x), t(S2 ∪{i}))G(θ(x), t(S1))|> 0.

We remark that Assumption 4(a) is satisfied as long as all m individual treatment conditions and the

fully control condition are assigned with positive probability, i.e., ν((0,0, . . . ,0)′|x)> 0, ν((1,0, . . . ,0)′|x)>
0, ν((0,1, . . . ,0)′|x)> 0, . . . , ν((0,0, . . . ,1)′|x)> 0, uniformly for all x.

A.2. Influence Function

The following Lemma formally states a generic result regarding the influence function, which proves useful to

derive the influence function in our setting (Proposition 2). The derivation of this influence function result is

already presented in Farrell et al. (2020). We reproduce the derivation of influence function for completeness.

This derivation follows the pathwise derivative method originated in Newey (1994).
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Lemma 1 (Theorem 2 in Farrell et al. (2020)). For all t∈ {0,1}m, suppose the following conditions

hold uniformly for x. (i) Equation (1) holds and identifies θ∗(·). (ii) Λ(x) := E[ℓθθ(Y,T ,θ(x))|X = x] is

invertible with uniformly bounded inverse. (iii) Parameter µ(t) is identified, pathwise differentiable, and H(·)
is thrice continuously differentiable in θ. (iv) H(X,θ∗(X), t, t0) and ℓθ(Y,T ,θ

∗(X)) possess q > 4 finite

absolute moments and positive variance. Then for the treatment effect µ(t), the Neyman orthogonal score is

ψ(z,θ,Λ; t, t0)−µ(t), where

ψ(z,θ,Λ; t, t0) =H(x,θ(x); t, t0)−Hθ(x,θ(x); t, t0)
′Λ(x)−1ℓθ(y, ť,θ(x)), (9)

where ℓθ,Hθ are dθ-dimensional vectors of first order derivatives, and ℓθθ is the dθ × dθ Hessian matrix of

ℓ, with {k1, k2} element defined by ∂2ℓ/∂θk1
∂θk2

.

Proof. Following Newey (1994), we assume that the parametric model is indexed by η, so the data distri-

bution is expressed as Fη, and true models are indexed by η= 0. Correspondingly,

µ(η) =

∫
H(x,θ(x;η); t, t0)f(x;η)dx,

where f(·) is the density of x regarding an appropriate dominating measure. When evaluating at η= 0, the

dependence on η is omitted, e.g., θ(x; 0) is simplified as θ∗(x).

For the (true) score S(y,x, t) = f ′
η(y,x, t;η)/f(y,x, t;η)|η=0 of the parametric model, we need to find a

function ψ(y,x, t) such that
∂µ(η)

∂η

∣∣∣∣
η=0

=E[ψ(y,X,T )S(y,X,T ).

According to Newey (1994), the function ψ(·) is then the uniquely defined influence function, given the

technical conditions that we have assumed.

Note that

∂µ(η)

∂η

∣∣∣∣
η=0

=
∂

∂η

∫
H(x,θ(x;η); t, t0)f(x;η)dx

∣∣∣∣
η=0

=

∫
H(x,θ∗(x); t, t0)

∂f(x;η)

∂η
dx+

∫ (
Hθ(x,θ

∗(x); t, t0)
′θη(x)

)
f(x)dx

(10)

where θη(x) = θ′
η(x;η)|η=0 is the dθ dimensional vector gradient of θ(x;η) with respect to η, evaluated at

η= 0, and Hθ(x,θ
∗(x); t, t0) is the dθ dimensional gradient vector of H with respect to θ, evaluated at η= 0.

Next, we will show both terms in equation (10) can be written as expectations of products with score

function. The following standard fact of the score function is used,

S(y,x, t) = S(y, t|x)+S(x)

Then the first term of (10) becomes∫
H(x,θ∗(x); t, t0)

∂f(x;η)

∂η
dx=E[H(X,θ∗(X); t, t0)S(X)]

=E[H(X,θ∗(X); t, t0)S(Y,X,T )],

where the first equality follows S(x)f(x) = ∂f(x;η)/∂η|η=0 and the second equality follows the fact

E[H(X,θ∗(x); t, t0)S(Y,T |X)] =E[H(X,θ∗(x); t, t0)E[S(Y,T |X)] |X] = 0. Note that this term is the stan-

dard plug-in term in the influence function.
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Notice that from the assumption E[y |X = x,T = t] =G(θ∗(x), t) and the fact the first-order condition

for square loss minimization holds for any η, we can get the following identity,

Eη

[
ℓθ(Z,θ(X;η))

∣∣∣X =x
]
≡ 0.

Making this explicit gives the form ∫
ℓθ(z,θ(x;η))fy,t |x(y, t;η |x)≡ 0.

Differentiating this identity with respect to η and using the chain rule, and evaluating at η= 0, we obtain

E
[
ℓθ(Z,θ

∗(X))S(Y,T |X) |X =x
]
+E

[
ℓθθ(Z,θ

∗(X))θη(X) |X =x
]
= 0, (11)

where S(Y,T |X) is conditional score and obtained by S(Y, t |x)fy,t |x(y, t |x) = ∂fy,t |x(y, t;η |x)/∂η | η=0.

Rearranging (11) and using the fact θ is the function of x, we can get the following equality,

E
[
ℓθθ(Z,θ

∗(X)) |X =x
]
θη(x) =−E

[
ℓθ(Z,θ

∗(X))S(Y,T |X) |X =x
]
.

By definition, Λ(x) :=E
[
ℓθθ(z,θ

∗(x)) |X =x
]
and we have assumed that Λ(x) is nonsingular, we can solve

the equation to get

θη(x) = −E
[
ℓθθ(Z,θ

∗(X)) |X =x
]−1

E
[
ℓθ(Z,θ

∗(X))S(Y,T |X) |X =x
]

= E
[
Λ(x)−1ℓθ(Z,θ

∗(X))S(Y,T |X) |X =x
]
.

Insert the above equality into (10) and use the iterated expectations. Then we rewrite the second term as,∫ (
Hθ(x,θ

∗(x); t, t0)
′θη(x)

)
f(x)dx = −E

[
Hθ(X,θ∗(X); t, t0)

′E
[
Λ(X)−1ℓθ(Z,θ

∗(X))S(Y,T |X) |X
]]

= −E
[
E
[
Hθ(X,θ∗(X); t, t0)

′Λ(X)−1ℓθ(Z,θ
∗(X))S(Y,T |X) |X

]]
= −E

[
Hθ(X,θ∗(X); t, t0)

′Λ(X)−1ℓθ(Z,θ
∗(X))S(Y,T |X)

]
.

Because the first order condition holds conditionally, we have,

E
[
Hθ(X,θ∗(X); t, t0)

′Λ(X)−1ℓθ(z,θ
∗(X))S(X)

]
=E

[
Hθ(X,θ∗(X); t, t0)

′Λ(X)−1E[ℓθ(Z,θ∗(X)) |X]S(X)
]
,

which evaluates to zero. By applying S(y,x, t) = S(y, t |x) + S(x) and using the above equality, we can

further write the second term in (10) as,

−E
[
Hθ(X,θ∗(X); t, t0)

′Λ(X)−1ℓθ(z,θ
∗(X))S(Y,T ,X)

]
Thus, we can finally write equation (10) as the following form,

∂µ(η)

∂η
|η=0 =

∫
H(x,θ∗(x); t, t0)−Hθ(x,θ

∗(x); t, t0)
′Λ(x)−1ℓθ(z,θ

∗(x))f(x)dx.

This concludes the proof. □
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A.3. Proof of Proposition 1

We first present without proof a key convergence result inherited from Farrell et al. (2020).

Lemma 2 (Theorem 1 in Farrell et al. (2020)). Suppose Assumption 3, and the following regularity

assumptions hold,

(a). (Nonparametric Identifiability) The parameter function θ∗(x) can be nonparametrically identified

in DGP (1).

(b). (Lipschitz Continuity) There exists a positive constant Cℓ such that, for any θ(·), θ̃(·) and x,

| ℓ(y, t,θ(x))− ℓ(y, t, θ̃(x))| ≤Cℓ∥θ(x)− θ̃(x)∥2, (12)

(c). (Sufficient Curvature) There exist positive constants c1 and c2 such that, for any θ(·)∈FDNN ,

c1E[∥θ(X)−θ∗(X)∥22]≤E[ℓ(Y,T ,θ(X))]−E[ℓ(Y,T ,θ∗(X))]≤ c2E[∥θ(X)−θ∗(X)∥22]. (13)

With the structured DNN of width H =O(n
dX

2(p+dX ) log2 n) and depth L=O(logn) as illustrated in Figure

2, there exists a constant C such that

∥θ̂k −θ∗
k∥2L2(X) ≤C

{
n

− p
p+dX log8 n+

log logn

n

}
and

En

[
(θ̂k −θ∗

k)
2
]
≤C

{
n

− p
p+dX log8 n+

log logn

n

}
for n large enough with probability at least 1− exp(n

− dX
p+dX log8 n), for k= 1, . . . , dθ.

Assumptions in Lemma 2 are natural and common in the nonparametric M-estimation literature, which

consists of three parts: (a) the nonparametric identifiability of θ∗(·), (b) the Lipschitz continuity of loss

(i.e., Eqn. (12)), and (c) the sufficient curvature of loss (i.e., Eqn. (13)). Whereas the Lipschitz continuity

condition is mild and easy to check in our setting, the identifiability of θ∗(·) and the sufficient curvature

condition are non-trivial and should be verified carefully. In particular, the sufficient curvature condition (13)

is usually implied by a proper choice of the link function G(·, ·) and the treatment assignment mechanism

ν(·|·). This condition helps translate the convergence of outcomes Y into that of parameter functions θ(·).

To get the convergence results of parameter functions shown in Proposition 1, it is sufficient for us to

verify Assumption 3 and the assumptions in Lemma 2 are satisfied. Notice that Assumption 3 is essentially

the mild regularity assumption on the data-generating process. And the Lipschitz condition in Assumption

(b) can be easily satisfied by for all our proposed link functions in Section 3.2 because all G functions are

sufficiently smooth with bounded X, T , and θ. Because we use the squared loss function throughout the

paper, the second “≤” of curvature conditions in Assumption (c) is satisfied for our link functions. It is

sufficient for us to verify the identification assumption and first “≤” of curvature conditions in Assumption

(c) for different forms of G functions to guarantee the convergence of structured DNNs.

To simplify the notation, we define the one-dimension sigmoid function as S(x) := 1/(1+exp(−x)). In the

following, we give the proof for each proposed link function.

Standard Sigmoid Form In this part, we start with the standard sigmoid form,
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G(θ(x), t) :=
a

1+ exp
(
− (θ0(x)+ θ1(x)t1 + · · ·+ θm(x)tm)

) + b. (14)

where constant a ̸= 0, b are known constants, θ′ = (θ0, θ1, . . . , θm). This form with a = 1, b = 0 can be

widely used for binary classification. To satisfy the sufficient curvature condition, we need the sufficient

condition that matrix E[T̃ T̃ ′|X =x] is invertible uniformly in x, where T̃ ′ = (1,T ′). Note that because the

sigmoid function is continuously invertible, it is equivalent to verify for linear link function θ′t̃. The detailed

proof of identification and curvature conditions are straightforward and can be found in Corollary 1 in Farrell

et al. (2020).

Multiplicative Form

G(θ(x), t) = θ0(x)
(
1+ θ1(x)t1

)
. . .

(
1+ θm(x)tm

)
, (15)

where µ ≤ θ0(x) ≤M , and µ ≤ 1 + θk(x) ≤M, k = 1, . . . ,m, uniformly in x, for some M > µ > 0. This

uniformly positive condition guarantees the function form is well-defined. The proof of identification and

curvature conditions can be verified as shown in the following.

logG= log θ0(x)(1+ θ1(x)t1) . . . (1+ θm(x)tm)

= log θ0(x)+ log(1+ θ1(x)t1)+ · · ·+ log(1+ θm(x)tm)

= log θ0(x)+ log(1+ θ1(x))t1 + · · ·+ log(1+ θm(x))tm,

which means the functional form G is equivalent to exp(a(x)+b1(x)t1+ · · ·+bm(x)tm), with a(x) = log θ0(x),

and bk(x) = log(1+θk(x)). Because the exponential function is monotone and smooth, to satisfy the sufficient

curvature condition, we only need, E[T̃ T̃ ′|X =x] are invertible uniformly in x, where T̃ ′ = (1,T ′).

Generalized Sigmoid Form I

G(θ(x), t) :=
θm+1(x)

1+ exp
(
− (θ1(x)t1 + · · ·+ θm(x)tm)

) . (16)

where θm+1(x) ∈ R can capture the range of outcome, and the sign of θi(x) represents the experiment

i = 1, . . . ,m has a positive or negative effect. To satisfy both identification and sufficient curvature, the

condition that E[TT ′|X =x] are invertible uniformly in x is not sufficient anymore.

In this case, we need the stronger assumption that uniformly for any x, ν(0|x) = P[t = 0|x] > 0 and

E[TT ′|X = x] invertible. It is easy to verify the identification since under t = 0, θ0(x) is identified, and

following the same argument with invertible E[TT ′|X =x], we get identified θ(x).

To prove the Proposition 1 under Generalized Sigmoid Form I, it is sufficient to show the identification

of θ∗(x) and the sufficient curvature property under the assumption ν(0|x) > 0, E[TT ′|X = x] ≻ 0, and

|θ∗m+1(x)|> 0 uniformly in x, i.e., Assumption 4 (a) and (b-iii).
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Proof. For simplicity of discussion, we use notation T = (T1, . . . , Tm)′, and θ= (θ1, . . . , θm)′.

First, we show that θ∗(x) can be nonparametrically identified. Let E[Y |X = x,T = t] =

θ̂m+1(x)S(θ̂(x)
′t) = θ̃m+1(x)S(θ̃(x)

′t). Because ν(0|x) = P[T = 0|X = x] > 0, and S(0) ̸= 0, we get

θ̂m+1(x) = θ̃m+1(x). Because θ∗m+1(x)S(θ
∗(x)′t) ̸= 0, and θ̂m+1(x) = θ̃m+1(x), we have S(θ̂(x)′t) =

S(θ̃(x)′t). Note that S is continuously invertible. We derive the following result,

0 =E[(θ̂′(x)t− θ̃′(x)t)2|x] = (θ̂′(x)− θ̃′(x))E[TT ′|x](θ̂(x)− θ̃(x)).

Since E[TT ′| X =x]≻ 0, we have θ̂(x) = θ̃(x).

Next, we show the sufficient curvature condition. Due to the squared loss function E[ℓ(Y,T ,θ(X))] −

E[ℓ(Y,T ,θ∗(X))] = E[(G(θ(x), t) − G(θ∗(x), t))2] = E[(θm+1(X)S(θ(X)′T ) − θ∗m+1(X)S(θ∗(X)′T ))2], its

is equivalent to show that there exist a constant c > 0 such that cE[
∑m+1

i=1 (θi(X) − θ∗i (X))2] ≤

E[(θm+1(X)S(θ(X)′T )− θ∗m+1(X)S(θ∗(X)′T ))2].

Because the condition P[T = 0| X =x]> 0, ∀x and S(0) ̸= 0, there exits a constant c1 > 0, such that,

E[(θm+1(x)S(θ(x)
′t)− θ∗m+1(x)S(θ

∗(x)′t))2]≥ c1E[(θm+1(x)− θ∗m+1(x))
2]. (17)

With the condition E[TT ′|X = x] ≻ 0, we can show that there exists a constant c2 > 0, the following

inequality holds,

E[(S(θ(x)′t)−S(θ∗(x)′t))2]≥ c2E[
m∑

i=1

(θi(x)− θ∗i (x))
2]. (18)

Follow the below decomposition from the triangle inequality,

|θ∗m+1(x)S(θ
∗(x)′t)− θm+1(x)S(θ(x)

′t)|

≥|θ∗m+1(x)S(θ
∗(x)′t)− θ∗m+1(x)S(θ(x)

′t)| − |θ∗m+1(x)S(θ(x)
′t)− θm+1(x)S(θ(x)

′t)|

=|θ∗m+1(x)||S(θ∗(x)′t)−S(θ(x)′t)| − |θ∗m+1(x)− θm+1(x)|S(θ(x)′t)

With the boundedness condition of θ∗m+1(x), and S(·), and taking the full expectation to both sides, it

holds that there exists a constant M1 > 0 such that

E[(S(θ(x)′t)−S(θ∗(x)′t))2]≤M1(E[(θm+1(x)S(θ(x)
′t)−θ∗m+1(x)S(θ

∗(x)′t))2]+E[(θ∗m+1(x)−θm+1(x))
2]).

(19)

Putting the above three inequalities (17), (18), and (19) together, we finish the proof.

□

Generalized Sigmoid Form II

In this part, we consider the following parametric form of the conditional mean model

G(θ(x), t) :=
θm+1(x)

1+ exp
(
− (θ0(x)+ θ1(x)t1 + · · ·+ θm(x)tm)

) . (20)

Let t(S) denote the treatment assignment such that ti(S) = 1 if and only if i∈ S, where S ⊂ {1,2, . . . ,m}.

We restate the following sufficient conditions mentioned in Assumption 4 (a) and (b-iv).

• The matrix E[T̃ T̃ ′|X =x]≻ 0, where T̃ ′ = (1, T ′).
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• There exists a triplet i∈ {1, . . . ,m}, S1, S2 ⊂ {1,2, . . . ,m} such that i /∈ S1, i /∈ S2, S1 ̸= S2, and

ν(t(S1 ∪{i})|x) · ν(t(S1)|x) · ν(t(S2 ∪{i})|x) · ν(t(S2)|x)> 0,

and

|G(θ(x), t(S1 ∪{i}))G(θ(x), t(S2))−G(θ(x), t(S2 ∪{i}))G(θ(x), t(S1))|> 0.

• |θm+1(x)|> 0

We argue that those assumptions are sufficient to guarantee identification and sufficient curvature near

the truth, i.e., Proposition 1 under Generalized Sigmoid Form II

Proof. To flesh out the analysis, we notice that

θm+1(x)

G(θ(x), t)
− 1 = exp

(
− (θ0(x)+ θ1(x)t1 + · · ·+ θm(x)tm)

)
.

As a result, we it must be that(
θm+1(x)

G(θ(x), t(S1 ∪{i}))
− 1

)/(
θm+1(x)

G(θ(x), t(S1))
− 1

)
=

(
θm+1(x)

G(θ(x), t(S2 ∪{i}))
− 1

)/(
θm+1(x)

G(θ(x), t(S2))
− 1

)
,

since both the left-hand side and right hand side equal exp(−θi(x)ti). After the basic operation, this identity

can be rewritten as

θm+1(x) ·
[(

1

G(θ(x), t(S1 ∪{i}))G(θ(x), t(S2))
− 1

G(θ(x), t(S2 ∪{i}))G(θ(x), t(S1))

)
· θm+1(x)

− 1

G(θ(x), t(S1 ∪{i}))
− 1

G(θ(x), t(S2))
+

1

G(θ(x), t(S2 ∪{i}))
+

1

G(θ(x), t(S1))

]
= 0

Because we assume θm+1(x) ̸= 0, this equation admits a unique solution of θm+1(x). This implies that

θm+1(x) is identified under our assumption. Indeed, suppose that there exist θ̃0(x), θ̃1(x), . . . , θ̃m+1(x) such

that

G(θ̃(x),T ) =G(θ(x),T ),

for all given the realization x and t. Then,

P
[
T = t(S1 ∪{i})

∣∣∣X]
·P

[
T = t(S1)

∣∣∣X]
·P

[
T = t(S2 ∪{i})

∣∣∣X]
·P

[
T = t(S2)

∣∣∣X]
> 0,

implies G(θ̃(x),T ) =G(θ(x),T ) for T = t(S1 ∪ {i}), T = t(S1), T = t(S2 ∪ {i}) and T = t(S2). Then, the

argument above implies that θm+1(x) = θ̃m+1(x). The rank condition E[T̃ T̃ ′|X = x] ≻ 0 implies that all

other parameters are identified as well given the unique θm+1(x), because it follows from θm+1(x) = θ̃m+1(x)

that

θ0(x)+ θ1(x)T1 + · · ·+ θm(x)Tm = θ̃0(x)+ θ̃1(x)T1 + · · ·+ θ̃m(x)Tm

for all given the realization x and t, since the sigmoid function is monotone. This contradicts the rank

condition unless θi(x) = θ̃i(x) for all i= 0, . . . ,m. To summarize, it must be that θ̃(x) = θ(x), uniformly for

all realized X =x.

Notice that the above proof of identification also holds in the X-a.e. sense if we relax assumptions by only

requiring those conditions in X-a.e. sense. However, to satisfy the sufficient curvature condition near the

truth, assumptions in a.e. sense is not sufficient, and we do require it to hold uniformly for all X =x.
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Next, we give the proof of the sufficient curvature condition that there exists a constant c1 > 0 such that

c1E[∥θ(X)−θ∗(X)∥22]≤E[(G(θ(X),T )−G(θ∗(X),T ))2].

To carry out the analysis of the sufficient curvature condition, we first notice that the assumption,

P
[
T = t(S1 ∪{i})

∣∣∣X]
·P

[
T = t(S1)

∣∣∣X]
·P

[
T = t(S2 ∪{i})

∣∣∣X]
·P

[
T = t(S2)

∣∣∣X]
> 0,

implies there exists a constant c such that,

cE
[(
G(θ(X), t(S1 ∪{i}))−G(θ∗(X), t(S1 ∪{i}))

)2]≤E
[
(G(θ(X),T )−G(θ∗(X),T ))2

]
cE

[(
G(θ(X), t(S1))−G(θ∗(X), t(S1))

)2]≤E
[
(G(θ(X),T )−G(θ∗(X),T ))2

]
cE

[(
G(θ(X), t(S2 ∪{i}))−G(θ∗(X), t(S2 ∪{i}))

)2]≤E
[
(G(θ(X),T )−G(θ∗(X),T ))2

]
cE

[(
G(θ(X), t(S2))−G(θ∗(X), t(S2))

)2]≤E
[
(G(θ(X),T )−G(θ∗(X),T ))2

]
.

Note that the right-hand side value of the above inequalities characterizes the DNN estimation error at the

first stage and is expressed as a function in the number of samples n, see Lemma 2. Under the same reasoning

as an identification proof, we can express θm+1(x) as,(
G(θ(x), t(S1))G(θ(x), t(S2))G(θ(x), t(S2 ∪{i}))+G(θ(x), t(S1))G(θ(x), t(S1 ∪{i}))G(θ(x), t(S2 ∪{i}))

−G(θ(x), t(S1))G(θ(x), t(S2))G(θ(x), t(S1 ∪{i}))−G(θ(x), t(S2))G(θ(x), t(S1 ∪{i}))G(θ(x), t(S2 ∪{i}))
)

/(
G(θ(x), t(S2 ∪{i}))G(θ(x), t(S1))−G(θ(x), t(S1 ∪{i}))G(θ(x), t(S2))

)
.

Because the denominator is uniformly bounded away from 0 by Assumption and θm+1(x) is expressed as a

bounded and smooth function in G(θ(x), t(S1 ∪ {i})), G(θ(x), t(S2 ∪ {i})), G(θ(x), t(S1)), G(θ(x), t(S2)),

the errors of which are bounded almost surely in x. We can conclude that E[|θm+1(X) − θ∗m+1(X)|2] ≤

O
(
E
[
(G(θ(X),T )−G(θ∗(X),T ))2

])
.

We spread out the following decomposition,∣∣∣G(θ∗(x), t)−G(θ(x), t)
∣∣∣

=
∣∣∣θ∗m+1(x)/

(
1+ exp

(
− (θ∗0(x)+ · · ·+ θ∗m(x)tm)

))
− θm+1(x)/

(
1+ exp

(
− (θ0(x)+ · · ·+ θm(x)tm)

))∣∣∣
≥
∣∣∣θ∗m+1(x)/

(
1+ exp

(
− (θ∗0(x)+ · · ·+ θ∗m(x)tm)

))
− θ∗m+1(x)/

(
1+ exp

(
− (θ0(x)+ · · ·+ θm(x)tm)

))∣∣∣
−
∣∣∣θ∗m+1(x)/

(
1+ exp

(
− (θ0(x)+ · · ·+ θm(x)tm)

))
− θm+1(x)/

(
1+ exp

(
− (θ0(x)+ · · ·+ θm(x)tm)

))∣∣∣
=θ∗m+1(x) ·

∣∣∣1/(1+ exp
(
− (θ0(x)+ · · ·+ θm(x)tm)

))
− 1/

(
1+ exp

(
− (θ∗0(x)+ · · ·+ θ∗m(x)tm)

))∣∣∣
−
∣∣∣θm+1(x)− θ∗m+1(x)

∣∣∣ ·(1/(1+ exp
(
− (θ0(x)+ · · ·+ θm(x)tm)

)))
.

By taking the full expectation to both sides and rearranging terms, we can find a bounded constant M such

that the following inequality holds due to the boundness of the sigmoid function and θ∗(x),

E
[(

1
/(

1+ exp
(
−(θ0(X)+ θ1(X)T1 + · · ·+ θm(X)Tm)

))
− 1

/(
1+ exp

(
− (θ∗

0 (X)+ θ∗
1 (X)T1 + · · ·+ θ∗

m(X)Tm)
)))2]

≤ME
[(
G(θ∗(X),T )−G(θ(X),T )

)2
+

(
θ∗
m+1(X)− θm+1(X)

)2]
.

(21)
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Notice that by the rank condition E[T̃ T̃ ′|X]≻ 0, there must exist a constant c2 such that,

E
[(

1
/(

1+ exp
(
− (θ0(X)+ θ1(X)T1 + · · ·+ θm(X)Tm)

))
− 1

/(
1+ exp

(
− (θ∗

0 (X)+ θ∗
1 (X)T1 + · · ·+ θ∗

m(X)Tm)
)))2]

≥ c2E
[ m∑

i=0

(
θi(X)− θ∗

i (X)
)2]

.
(22)

Combining inequalities (21), (22), and E[|θm+1(X)−θ∗m+1(X)|2]≤O
(
E
[
(G(θ(X),T )−G(θ∗(X),T ))2

])
,

we finish the proof by showing the fact that,

E
[m+1∑

i=0

(
θi(X)− θ∗i (X)

)2]≤O
(
E
[
(G(θ(X),T )−G(θ∗(X),T ))2

])
,

i.e., there exist a constant c1 such that c1E[∥θ(X)−θ∗(X)∥22]≤E
[
(G(θ(X),T )−G(θ∗(X),T ))2

]
. □

A.4. Proof of Proposition 2

Proof. The results directly follow from Theorem 2 of Farrell et al. (2020), which we also replicate in

Lemma 1 in Appendix A.2. We now verify the assumptions of Lemma 1.

First, we derive the first order derivative ℓθ and Hessian matrix ℓθθ. With the loss function ℓ(y, t,θ(x)) =

(y−G(θ(x), t))2, we can compute to get,

ℓθ = (∂ℓ/∂θ1, . . . , ∂ℓ/∂θdθ )
′ = 2(G− y)Gθ,

ℓθθ = 2GθG
′
θ +2Gθθ(G− y),

Λ(x) =E[ℓθθ|x] = 2ET |x[GθG
′
θ|x] + 2ET |x

[
GθθEy|t,x[(G− y)|t,x]|x

]
= 2E[GθG

′
θ|x].

The first three conditions of Lemma 1 follow from Assumptions 2(i), (ii) and (iii). Because the link function

G satisfies the smoothness and boundedness conditions of the fourth condition of Lemma 1, Proposition 2

follows immediately from Lemma 1.

□

A.5. Verification of Assumption 2(ii)

In the following, we illustrate that under our treatment assignment mechanism in Assumption 4, Assumption

2(ii), i.e., Λ(x)≻ 0 (i.e., vectors {Gθ(θ(x), t)}t are non-degenerate) is easy to satisfy and can be translated to

the very lenient condition. Without loss of generality, we take Generalized Sigmoid Form II for illustration.

By definition, we have Λ(x) = 2E[Gθ(θ(x),T )Gθ(θ(x),T )′|X =x], where

Gθ(θ(x), t)
′ =

(θm+1(x) exp(−(θ0(x)+ · · ·+ θm(x)tm))

(1+ exp(−(θ0(x)+ · · ·+ θm(x)tm)))2
(1, t1, . . . , tm),

1

1+ exp(−(θ0(x)+ · · ·+ θm(x)tm))

)
.

Thus, to verify Λ(x) is invertible, it suffices to show that the matrix constructed by vectors {Gθ(θ(x), t)}t

has full rank m+ 2. For ease of exposition, we drop the dependence on x without confusion because all

conditions should hold uniformly in x.

In the following, we consider a common treatment assignment as a special mechanism of Assumption

4(a),(b-iv) for illustration (all other assignment rules can be translated into similar lenient conditions). Specif-

ically, to satisfy E[T̃ T̃ ′|X =x]≻ 0, we consider the assignment ν(t(∅)|x)> 0, ν(t({1})|x)> 0, ν(t({2})|x)>

0, . . . , ν(t({m})|x)> 0, together with the overlapping assignment ν(t(S1)|x)> 0 (WLOG, choose S1 from one

of single treatment conditions, fix S1 = {1}), ν(t(S1 ∪ {i})|x)> 0, ν(t(S2)|x)> 0, and ν(t(S2 ∪ {i})|x)> 0.
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Let e0 = exp(−θ0), ei = exp(−θ0− θi), for i= 1,2, . . . ,m, and em+1 = exp(−θ′t(S1 ∪{i})), then the rank can

be written as,

rank(Λ)≥ rank



θm+1e0
1+e0

(1,0,0,0, . . . ,0) 1
1+e0

θm+1e1
1+e1

(1,1,0,0, . . . ,0) 1
1+e1

θm+1e2
1+e2

(1,0,1,0, . . . ,0) 1
1+e2

θm+1e3
1+e3

(1,0,0,1, . . . ,0) 1
1+e3

...
...

θm+1em

1+em
(1,0,0,0, . . . ,1) 1

1+em
θm+1em+1

1+em+1
(1, t(S1 ∪{i})′) 1

1+em+1


= rank



e0
1+e0

(1,0,0,0, . . . ,0) 1
1+e0

e1
1+e1

(1,1,0,0, . . . ,0) 1
1+e1

e2
1+e2

(1,0,1,0, . . . ,0) 1
1+e2

e3
1+e3

(1,0,0,1, . . . ,0) 1
1+e3

...
...

em
1+em

(1,0,0,0, . . . ,1) 1
1+emem+1

1+em+1
(1, t(S1 ∪{i})′) 1

1+em+1



= rank



1 0 0 0 . . . 0 1
e0

1 1 0 0 . . . 0 1
e1

1 0 1 0 . . . 0 1
e2

1 0 0 1 . . . 0 1
e3

...
...

...
1 0 0 0 . . . 1 1

em

1 t(S1 ∪{i})′ 1
em+1


= rank



1 0 0 0 . . . 0 1
e0

0 1 0 0 . . . 0 1
e1

− 1
e0

0 0 1 0 . . . 0 1
e2

− 1
e0

0 0 0 1 . . . 0 1
e3

− 1
e0

...
...

...
0 0 0 0 . . . 1 1

em
− 1

e0

0 0 0 0 . . . 0 1
em+1

− 1
e0

− ( 1
e1

− 1
e0
)− ( 1

ei
− 1

e0
)


.

The inequality follows from the fact the right-hand side matrix is only expanded by partial of vectors

{Gθ(θ(x), t)}t. The first equation follows from θm+1 ̸= 0. The second equation follows from 1+ ei ̸= 0 and

ei ̸= 0, for all i= 1,2, . . . ,m. The third equation follows subtraction operations among rows. To guarantee

the full rank rank(Λ) =m+2, one sufficient condition is 1
em+1

− 1
e1

− 1
ei
+ 1

e0
̸= 0, i.e., bottom right entry is

non-zero, which is a very weak condition.

For other assignment mechanisms in Assumption 4, one can also translate the invertibility of Λ into a

very lenient condition. We omit the details for brevity.

A.6. ATE Estimator Construction via Cross-fitting

In the following, we introduce the sample-splitting/cross-fitting and estimation procedure from Chernozhukov

et al. (2018). Note that in our setting with the known distribution of T , we only require the two-way splitting.

But for unknown T distribution, three-way splitting is required, with an additional portion of samples used

for obtaining Λ̂(x).

One can split the data samples {1,2, . . . , n} into S non-overlapping copies Ss ⊂ {1,2, . . . , n}, s= 1,2 . . . , S

with the cardinality |Ss| being proportionally to the sample size n, and let Sc
s be the complement of Ss. First,

we use Sc to get estimators θ̂s(·) of parameters θ∗(·), and compute Λ̂s(·) given the estimators θ̂s(·) and

distribution of T . Then, one can use the other samples to construct an estimator of µ(t), for any t∈ {0,1}m

as,

µ̂DeDL(t) =
1

S
µ̂s(t), µ̂s(t) =

1

|Ss|
∑
i∈Ss

ψ(zi, θ̂s(xi), Λ̂s(xi); t, t0). (23)

Similarly, the variance estimator can be constructed as,

Ψ̂DeDL(t;µ) =
1

S
Ψ̂s(t), Ψ̂s(t) =

1

|Ss|
∑
i∈Ss

(
ψ(zi, θ̂s(xi), Λ̂s(xi); t, t0)− µ̂DeDL(t)

)2

. (24)
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The asymptotic normality in Proposition 3(a) directly follows from Chernozhukov et al. (2018), and

detailed proof can also be found in Farrell et al. (2020).

Therefore, the (1−α)-confidence interval of µ̂DeDL(t) is given by

ĈIDeDL(t;µ) =
[
µ̂DeDL(t)−

1√
n
·Φ−1

(
1− α

2

)
· Ψ̂DeDL(t;µ), µ̂DeDL(t)+

1√
n
·Φ−1

(
1− α

2

)
· Ψ̂DeDL(t;µ)

]
, (25)

where Φ−1(·) is the inverse cumulative distribution function of a standard normal random variable.

A.7. Estimation and Inference for Best-Arm Identification

After getting asymptotically normal estimators of average treatment effect µ̂(t) for all experiment com-

binations t ∈ {0,1}m, the next step is identifying the best experiment combination, which is defined as

t∗ := argmaxt∈{0,1}m µ(t).

Following the common practice, one can search for the best treatment combination by searching for the

highest ATE estimation. Formally, we define the empirical best treatment level as t̂∗ := argmaxt∈{0,1}m µ̂(t).

The remaining job is verifying whether t̂∗ is the best treatment level with significant improvements over all

other treatment levels, i.e., we do the one-side hypothesis test on whether the average treatment effect of t̂∗

is significantly better than other treatments,

H0 : τ(t)> 0, for all t∈ {0,1}m\{t̂∗},

where

τ(t) := µ(t̂∗)−µ(t) =E[G(θ∗(x), t̂∗)]−E[G(θ∗(x), t)],

is the improvement of ATE of empirically best t̂∗ over the treatment level t∈ {0,1}m. Notice that the τ(t)

can be rewritten as,

τ(t) =E[H(x,θ∗(x); t̂∗, t)],

which is similar to the expression µ(t) = E[H(x,θ∗(x); t, t0)] simply by changing the inputs of advantage

function H.

Applying the similar influence function (9) developed in Section 3.3, i.e., ψ(z,θ,Λ; t̂∗, t) =

H(x,θ(x); t̂∗, t)−Hθ(x,θ(x); t̂
∗, t)′Λ(x)−1ℓθ(y, ť,θ(x)) and the two-way splitting procedure, we construct

the estimators

τ̂DeDL(t) := µ̂DeDL(t̂
∗
DeDL)− µ̂DeDL(t), (26)

and variance estimate Ψ̂DeDL(t; τ) for τDeDL(t).

Proof of Proposition 3

The asymptotic normality in Proposition 3(a) directly follows from Chernozhukov et al. (2018), and

detailed proof can also be found in Farrell et al. (2020). For Part (b), however, because the empirically

optimal arm t̂∗ := argmaxt∈{0,1}m µ̂(t) depends on the samples used for training and inference for ATEs, the

proof in Chernozhukov et al. (2018), Farrell et al. (2020) cannot be directly extended for the inference of

best-arm identification, i.e., asymptotic normality of τ̂DeDL(t). This is also the major challenge in the proof

of Proposition 3(b) below.
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Proof. To tackle the challenge brought by the independence of empirically optimal arm t̂∗ on the random-

ness of samples. We introduce an imaginary but valid inference function based on the true optimal t∗, which

is fixed as a prior and does not depend on the randomness of samples, i.e., ψ(z,θ,Λ; t∗, t)− (µ(t∗)−µ(t)).

Note that this introduced influence function only virtually exists because one cannot know t∗ in advance

and is only for proof purposes.

Given the functions ψ(z,θ,Λ; t∗, t) and ψ(z,θ,Λ; t̂∗, t), we construct the following estimands to simplify

the exposition and drop out the subscript DeDL, i.e., µ(t) to represent µDeDL(t) without confusion.

ζ̂(t) := µ̂(t∗)− µ̂(t), ζ(t) := µ(t∗)−µ(t),

τ̂(t) := µ̂(t̂∗)− µ̂(t), τ(t) := µ(t∗)−µ(t).

Similarly, one can construct the variance estimate Ψ̂(t; ζ) of the virtual ζ(t).

First, we can easily establish the asymptotic normality of ζ̂(t) following Theorem 3 in Farrell et al. (2020),

√
n
(
Ψ̂(t; ζ)

)−1/2
(ζ̂(t)− ζ(t)) =

n∑
i=1

(
Ψ̂(t; ζ)

)−1/2(
ψ(zi,θ

∗(xi),Λ(xi), t
∗, t)− ζ(t)

)
/
√
n+ op(1)→d N (0,1).

(27)

Next, we aim at showing with probability going to 1, the optimal treatment combination is correctly

identified i.e., lim
n→∞

P[t̂∗ = t∗] = 1, with a little abuse use of notation because t̂∗ depends on sample size n, and

can be written as t̂∗n more rigorously. Since it does not cause any confusion, we keep using t̂∗ for simplicity.

Note that we have µ̂(t∗)→p µ(t
∗), as well as µ̂(t)→p µ(t) for any t∈ {0,1}m t∗. So we have

(
µ̂(t∗), µ̂(t)

)
→p(

µ(t∗), µ(t)
)
. Then by continuous mapping theorem (max operator is L1 norm), we have,

max
(
|µ̂(t∗)−µ(t∗)|, |µ̂(t)−µ(t)|

)
→p 0,

which means with probability going to 1,

max
(
|µ̂(t∗)−µ(t∗)|, |µ̂(t)−µ(t)|

)
≤ µ(t∗)−µ(t)

4
, (28)

due to the assumption of the unique optimal t∗.

Furthermore, Eqn. (28) implies,

µ̂(t∗)− µ̂(t) = [µ(t∗)− (µ(t∗)− µ̂(t∗))]− [µ(t)− (µ(t)− µ̂(t))]≥ µ(t∗)−µ(t)

2
> 0.

Therefore, with the probability going to 1, we have µ̂(t∗) > µ̂(t). Taking union bound over (2m − 1)

treatment combinations, we have µ̂(t∗)>maxt̸=t∗ µ̂(t), which means with the probability going to 1, t̂∗ =

argmaxt µ̂(t) = t∗.

Note that t̂∗ = t∗ simply implies that
√
n
(
Ψ̂(t; ζ)

)−1/2
(ζ̂(t) − ζ(t)) −

√
n
(
Ψ̂(t; τ)

)−1/2
(τ̂(t) − τ(t)) =

0 by the construction. Then, we have that for any ε > 0, limn→∞ P[|
√
n
(
Ψ̂(t; ζ)

)−1/2
(ζ̂(t) − ζ(t)) −

√
n
(
Ψ̂(t; τ)

)−1/2
(τ̂(t)− τ(t))|< ε] = 1.

Combing the fact
√
n
(
Ψ̂(t; ζ)

)−1/2
(ζ̂(t)− ζ(t))−

√
n
(
Ψ̂(t; τ)

)−1/2
(τ̂(t)− τ(t))→p 0 with the asymptotic

normality result (27), by Slutsky’s theorem, we have,

√
n
(
Ψ̂(t; τ)

)−1/2
(τ̂(t)− τ(t)) =

n∑
i=1

(
Ψ̂(t; τ)

)−1/2(
ψ(zi,θ

∗(xi),Λ(xi), t
∗, t)− τ(t)

)
/
√
n+ op(1)→d N (0,1),

which finishes the proof. □

Given the asymptotic normality, the (1−α)-confidence interval for τ̂DeDL(t) is given by

ĈIDeDL(t; τ) =
[
τ̂DeDL(t)−

1√
n
·Φ−1

(
1− α

2

)
· Ψ̂DeDL(t; τ), τ̂DeDL(t)+

1√
n
·Φ−1

(
1− α

2

)
· Ψ̂DeDL(t; τ)

]
. (29)
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Appendix B: Empirical Analysis with Field Experiment Data

B.1. User Covariates Used in Section 4

Table 5 present all the user covariates used in our empirical analysis in Section 4.

Table 5 User Covariates Used in the DeDL Framework

Variable Description

Discrete
Variables

Age Range The age range of user: young, mid-age, senior, old, or unknown
Gender The gender of user: male, female, or unknown
Operating System The OS of user’s device: Android, IOS, or other
Product Version The version used: lite version, express version, or normal version
Feed Model The preferred mode of user: video stream, video cover stream, or unknown
Phone Price Range The price range of user’s device: luxury, expensive, affordable, or unknown
User Activeness Degree The activeness of user: high-active, middle-active, low-active, or new user
User Active-Deepness Degree The active-deepness of user: deep-active, low-active, or new user
Number of Followers Interval Interval of user’s followers: <10, 10 - 10k, 10k - 100k, >100k
Number of Followers Range Range of user’s followers: amateur, medium producer, or premium producer
Number of Mutual Followers Interval Interval of user’s friends: <10, 10 - 10k, 10k - 100k, >100k
Number of Mutual Followers Range Range of user’s friends: low-sociable, middle-sociable, or high-sociable

Frequent Residence Area
The region area in which the user is frequent on the platform:
South, North, or unknown

Frequent Residence City Level
The level of city in which the user is frequent on the platform:
large city, big city, medium city, small city, or unknown

Frequent Residence City Type
The type of city in which the user is frequent on the platform:
city, town, rural, or unknown

Active Engagement City Level
The level of city in which the user is always active:
large city, big city, medium city, small city, or unknown

Continuous
Variables

Average App Usage Duration User’s average usage duration on platform per day
Average Video Watching Time User’s average time on watching videos on platform per day
Average Live Watching Time User’s average time on watching live on platform per day
Average DP Video Watching Time User’s average time on watching videos on Discover Page per day
Average LP Video Watching Time User’s average time on watching videos on Live Page per day
Average FYP Video Watching Time User’s average time on watching videos on For You Page per day
Average FP Video Watching Time User’s average time on watching videos on Following Page per day
Average DP Screen Time User’s average time on Discover Page per day
Average LP Screen Time User’s average time on Live Page per day
Average FP Screen Time User’s average time on Following Page per day

B.2. Stratified Sampling

A three-step stratified sampling is employed to keep users’ covariates balanced with respect to eight different

treatment combinations. Firstly, we categorize 10 continuous variables in Table 5 by their quantile intervals

[0%,25%), [25%,50%), [50%,75%), and [75%,100%]. Specifically, we assign 1, 2, 3, and 4 as new values

for values in each quantile interval respectively for each continuous variable. After all the variables are

discretized, we proceed to divide the population into subpopulations according to imbalanced covariates.

To check for diversely distributed covariates, we utilize a pairwise T-test between baseline combination

(0,0,0) and 7 treatment combinations for covariates in Table 5. Among 26 covariates, 16 discrete covariates

show no significant difference between baseline combination (0,0,0) and seven treatment combinations while

10 continuous variables are imbalanced distributed. Therefore, we divide users into 69,111 strata by the

value of imbalanced covariates. Namely, users are grouped if they have the same value in all imbalanced

covariates. Last, we perform random sampling. In each stratum, we set the minimum number of users among

all treatment combinations as the target size and then randomly sample the target size of individuals in each
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combination as the stratified sample. Therefore, the stratified sample has a similar number of users in each

treatment combination, and we can assume the treatment assignment mechanism is P[Ti = 1] = P[Ti = 0] = 0.5

(i= 1,2,3).

B.3. Implementation Details of DeDL

In this section, we present the implementation details of using DeDL to estimate ATE. We use the 4-fold cross-

fitting proposed in Chernozhukov et al. (2018) to obtain estimators. We randomly partition the observed

data of five observed treatment combinations with 1,291,652 data points into four folds (Is)
4
s=1 such that

each fold has approximately 322,913 data points. For each fold index s, we follow the steps described below to

obtain an estimated ATE for each treatment combination. First, we use the other three folds (Ii)i∈{1,2,3,4}\s

as training data to fit into structured DNN (see Figure 5) and get an estimator of the unknown parameters

θ̂s(·). Then, for each treatment combination t, we use fold (Is) to construct the estimator µ̂s(t̂) following

Equation 23. Specifically, for each treatment combination t ∈ T , we use the trained structured DNN to

predict non-debiased potential outcome defined as H(x, θ̂s(x); t, t0) :=G(θ̂s(x), t)−G(θ̂s(x), t0) given user

covariates x in fold (Is). We continue substituting x in fold (Is) to the unknown parameters θ̂s(·) obtained

by three other folds to calculate the debiased term as the right part of the right side in Equation 9 so that we

have ψ(z, θ̂s, Λ̂s; t, t0) for each data point z in fold (Is). By averaging ψ(z, θ̂s, Λ̂s; t, t0), we obtain estimated

ATE of treatment combination t in fold index s as µ̂s(t). Results of estimated ATE and 95%-confidence

interval for each treatment combination in each fold are presented in the first four rows in each section in

Table 6. After 4-fold cross-fitting, we aggregate µ̂s(t̂) by taking their average value as the final estimator

µ̂(t̂) for each treatment combination t. We report the results of the final estimator in the last row of each

section in Table 6.

The estimators for best-arm identification are obtained through similar implementation procedures. Each

fold will generate its estimators for best-arm τ(t) regarding treatment combination t for t∈ T . Aggregating

the estimators from 4 folds generates the DeDL estimator for best-arm identification.

Appendix C: Implementation Details of Benchmarks

Linear Addition (LA) Estimator

To obtain LA estimator for each treatment level, we use ATE of five observed treatment combinations to

calculate ATE of unobserved treatment combinations. For observed treatment combinations, their estimated

ATE and significant level are the same as the ground truth. For unobserved treatment combinations, we use

the linear addition of ATE of individual observed treatment combinations as the estimated ATE. Further-

more, we estimate the standard error of estimated ATE for unobserved treatment combinations by assuming

the estimators for individual experiments are independent. We report the LA estimators in the first row in

each section of treatment combination in Table 7. The top four treatment combinations are observable and

therefore LA estimator yields zero error (see column (5-7) in Table 7). The estimators for ATE of the bottom

three treatment combinations use the ATE of individual treatment combinations, i.e. (0,0,1), (0,1,0), and

(1,0,0) to calculate the final results µ̂t∗ = µ̂t1+t2 = µ(t1) + µ(t2). The standard deviation of the estimator

follows σ̂(µ̂t∗) =
√
σ(µ(t1))+σ(µ(t2)).
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Table 6 Detailed Results of 4-fold DeDL Estimators

Treatment Ground-Truth Estimated 95%-Confidence Interval
Combination ATE Fold ATE for ATE Estimate APE SE AE

(1) (2) (3) (4) (5) (6) (7)

(0, 0, 1) 1.091%∗∗

1 -0.974% [−0.484%,−1.464%] 10.76% 1.379 1.174
2 -1.277% [−0.780%,−1.774%] 17.01% 3.448 1.857
3 -1.337% [−0.895%,−1.780%] 22.55% 6.054 2.461
4 -1.045% [−0.552%,−1.538%] 04.22% 0.212 0.461

Mean -1.158% [−0.678%,−1.639%] 06.14% 0.450 0.671

(0, 1, 0) -0.267%

1 -0.117% [−0.611%,−0.376%] NA 2.242 1.174
2 -0.358% [−0.845%,−0.128%] NA 0.835 0.914
3 -0.038% [−0.399%,−0.475%] NA 9.312 3.052
4 -0.627% [−1.125%,−0.129%] NA 12.973 3.602

Mean -0.266% [−0.745%,−0.212%] NA 0.000 0.008

(1, 0, 0) 0.758%∗

1 -0.707% [−0.200%,−1.214%] 06.73% 0.260 0.510
2 -0.761% [−0.271%,−1.252%] 00.44% 0.000 0.033
3 -0.986% [−0.546%,−1.427%] 30.13% 5.216 2.284
4 -0.747% [−0.250%,−1.244%] 01.47% 0.012 0.111

Mean -0.800% [−0.317%,−1.284%] 05.59% 0.180 0.424

(1, 1, 1) 2.121%∗∗∗∗

1 -2.457% [−1.785%,−3.128%] 15.84% 11.288 3.360
2 -2.304% [−1.630%,−2.978%] 08.63% 3.353 1.831
3 -1.254% [−0.630%,−1.878%] 40.85% 75.044 8.662
4 -2.457% [−1.788%,−3.127%] 15.88% 11.341 3.368

Mean -2.118% [−1.458%,−2.778%] 00.12% 0.00 0.026

(1, 1, 0) 0.689%

1 -0.616% [−2.801%,−1.568%] NA 170.299 13.050
2 -0.900% [−0.259%,−1.541%] NA 4.451 2.110
3 -0.640% [−0.136%,−1.271%] NA 0.021 0.146
4 -0.376% [−1.067%,−1.819%] NA 9.766 3.125

Mean -0.341% [−0.868%,−1.550%] NA 12.108 3.480

(1, 0, 1) 2.299%∗∗∗∗

1 -2.396% [−1.075%,−3.716%] 04.19% 0.926 0.962
2 -2.830% [−2.086%,−3.573%] 23.07% 28.129 5.304
3 -2.137% [−1.561%,−2.714%] 07.04% 2.619 1.619
4 -1.899% [−0.435%,−3.362%] 17.42% 16.048 4.006

Mean -2.315% [−1.289%,−3.341%] 00.70% 0.026 0.160

(0, 1, 1) 1.387%∗∗∗

1 -0.702% [−0.659%,−2.062%] 49.39% 46.919 6.850
2 -2.127% [−1.265%,−2.989%] 53.41% 54.849 7.406
3 -1.168% [−0.597%,−1.739%] 15.79% 4.792 2.189
4 -1.395% [−0.296%,−2.493%] 00.58% 0.00 0.080

Mean -1.348% [−0.375%,−2.321%] 02.80% 0.151 0.388

Note: The calculation of APE, SE, and AE is based on the scaled outcome variable (see Column (1) of this table). The
significance levels are encoded as ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001. SE is scaled by multiplying a constant. AE
is scaled by multiplying another constant.

Linear Regression (LR) Estimator

LR estimator uses the regression coefficients as the estimated ATE. The regression is defined as:

y= β1T1 +β2T2 +β3T3 +αx,

where T1, T2, and T3 denote for ExpT, ExpN, and ExpR, respectively, and x denotes for user’s characteristics

in Table B.1 after getting dummy variable. 1,291,652 data points in five observed treatment combinations are

used to obtain the estimators for β1, β2, and β3. Similar to LA estimators, LR estimators assume the linear

addition of ATE of treatment combinations with respect to ATE of the individual experiment. There are two

ways of utilizing coefficients obtained from linear regression. We can either use the β̂i as the estimated ATE

for individual experiment i then add the corresponding β̂i of the individual experiment for ATE of treatment
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combinations, or we can use the trained linear model to predict potential outcome y given user covariates x

under treatment combination t for t∈ T , and then use pair-wise t-test to obtain the final estimated ATE for

each treatment combination. Both ways will yield the same estimators. To maintain the fairness of comparing

the estimators of other benchmarks, a 4-fold crossing fitting is used here. Each time, only 75% of training

data will be utilized to train the linear regression model. The average value of estimated ATEs is presented

in the second row in each section of treatment combination in Table 7.

Pure Deep Learning (PDL) Estimator

4-fold cross-fitting is implemented to reduce the overfitting problem of PDL estimators. Similar to the im-

plementation of DeDL approach in Appendix B.3, we evenly partition the observed data of five treatment

combinations into four random folds. For each fold index, we use the data from three other folds as train-

ing data to approximate y = G(x, t) in a deep learning model. The structure of this deep learning model

is a 3-layer DNN with 20 nodes in each layer. We call it “pure” deep learning model since it exerts zero

constraints on the form of function G. The DNN in each fold is trained with Adam optimizer and mean

squared error loss as loss function. We then use trained DNN to predict the potential outcomes under 8

treatment combinations t for t∈ T given user’s covariates x in the fold and conduct the pair-wise t-test be-

tween treatment combination t and baseline combination t0 to obtain estimated ATE and its corresponding

standard deviation. Taking the average value of estimated ATEs and squared error of the estimator in four

folds provide the final PDL estimators and their squared errors. The third row in each section of treatment

combination in Table 7 shows the estimated ATE of PDL approach.

Structured Deep Learning (SDL) Estimator

Following the same implementation procedure of 4-fold cross-fitting as DeDL approach, the SDL estimator

differs from DeDL estimator in the score function. Instead of using the Neyman orthogonal score func-

tion ψ(z, θ̂s, Λ̂s; t, t0) with a debiased term, SDL estimator use the original non-debiased potential outcome

which is defined as H(x, θ̂s(x); t, t0) :=G(θ̂s(x), t)−G(θ̂s(x), t0). To derive the variance of SDL estimator,

we use the traditional pair-wise t-test such that V̂ ar(µ̂SDL(t
∗)) = 1

n−1

∑n

i=i
(G(θ̂s(x), t

∗)−G(θ̂s(x), t∗))
2 +

1
n−1

∑n

i=i
(G(θ̂s(x), t0)−G(θ̂s(x), t0))

2. Note that this is an underestimation of the true variance as we ne-

glect noise in G(θ̂s(x), t
∗). Detailed results of benchmark estimators are presented in the last row of each

treatment combination section in Table 7.

Appendix D: Complete Results of Synthetic Experiments

D.1. Complete Results of Experiments in Subsection 5.1

We document the complete simulation results of Section 5.1 in Table 8 and Table 9. We evaluate the perfor-

mance of estimators with an increasing number of A/B tests, i.e., m∈ {4,6,8,10}, and report corresponding

results in Panel A to D respectively. The first column “Estimator” describes which estimator is tested out.

The second column “CDR” shows the proportion of treatment combinations whose estimated ATE signifi-

cance levels and signs are consistent with the true ATE. The third column “MAPE” gives the mean absolute

percentage error of ATE estimates over all treatment combinations whose real average treatment effects

are significant. In other words, we rule out insignificant treatment combinations when calculating MAPE.
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Table 7 Detailed Results of Benchmark Estimators

Treatment Ground-Truth Estimated
Combination ATE Estimator ATE CD APE SE AE

(1) (2) (3) (4) (5) (6) (7)

(0, 0, 1) 1.091%∗∗

LA -1.091% 1 00.00% 0.000 0.000

LR -1.329% 1 21.79% 5.657 2.379

PDL -1.247% 1 14.24% 2.417 1.555

SDL -1.179% 1 08.00% 0.763 0.873

(0, 1, 0) -0.267%

LA -0.267% 1 NA 0.000 0.000

LR -0.013% 1 NA 6.460 2.542

PDL -0.036% 0 NA 5.353 2.314

SDL -0.072% 0 NA 3.792 1.947

(1, 0, 0) 0.758%∗

LA -0.758% 1 00.00% 0.000 0.000

LR -1.079% 1 42.29% 10.028 3.206

PDL -1.043% 1 37.60% 8.126 2.851

SDL -0.978% 1 28.95% 4.816 2.195

(1, 1, 1) 2.121%∗∗∗∗

LA -2.121% 1 0 0.00% 0.000 0.000

LR -2.395% 1 12.95% 7.539 2.746

PDL -2.326% 1 09.67% 4.209 2.052

SDL -2.040% 1 03.78% 0.642 0.801

(1, 1, 0) 0.689%

LA -0.491% 1 NA 3.902 1.975

LR -1.066% 0 NA 14.233 3.773

PDL -1.030% 0 NA 11.625 3.410

SDL -0.902% 0 NA 4.543 2.132

(1, 0, 1) 2.299%∗∗∗∗

LA -1.850% 1 19.56% 2.023 4.498

LR -2.408% 1 04.72% 1.178 1.085

PDL -2.333% 1 01.46% 0.112 0.336

SDL -2.148% 1 06.59% 2.297 1.516

(0, 1, 1) 1.387%∗∗∗

LA -0.824% 0 40.56% 3.163 5.624

LR -1.316% 1 05.08% 0.495 0.704

PDL -1.217% 1 12.26% 2.890 1.700

SDL -1.070% 1 22.84% 10.030 3.167

Note: The calculation of APE, SE, and AE is based on the scaled outcome variable (see Column (1) of this table). The
significance levels are encoded as ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001. SE is scaled by multiplying a constant. AE
is scaled by multiplying another constant.

Otherwise, those insignificant treatment effects would result in close-to-zero value in the denominators for

APE calculation, resulting in an undesired metric. Similarly, column “MSE” and column “MAE” represent

squared error and absolute error, respectively. In column “MSE” and column “MAE”, we do not exclude

those insignificant combinations. Indeed, unlike MAPE, close-to-zero treatment effects do not cause a prob-

lem for MSE and MAE. As a result, MAE and MSE over all combinations can serve as a supplement to

MAPE. However, to better understand the scales of MSE and MAE errors, we also report 95% confidence

intervals of average absolute treatment effects over all combinations in table notes. Lastly, the column “BAI”

represents the Best-Arm Identification result. For each replication of the experiment, we verify whether dif-

ferent methods can successfully identify the best treatment combination. The value in this column shows the

proportion of replications in which the best combination is identified.
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Table 8 Learning Estimator Validation Result

Panel A: Comparison of different estimators under m= 4

Estimator CDR MAPE MSE MAE BAI

LA
92.40% 22.64% 0.070 0.123 79.5%
(91.02%, 93.78%) (20.10%, 25.17%) (0.023, 0.118) (0.103, 0.143) (73.9%, 85.1%)

LR
95.34% 15.30% 0.038 0.089 82.0%
(94.46%, 96.23%) (13.56%, 17.04%) (0.0179, 0.0582) (0.074, 0.105) (76.6%, 87.3%)

PDL s p
88.59% 68.83% 0.867 0.433 56.0%
(87.02%, 90.17%) (60.76%, 76.89%) (0.572, 1.163) (0.378, 0.488) (49.1%, 62.9%)

SDL
95.12% 16.12% 0.018 0.079 90.5%
(94.17%, 96.08%) (14.57%, 17.66%) (0.011, 0.024) (0.070, 0.087) (86.4%, 94.6%)

DeDL
97.53% 7.20% 0.008 0.040 93.5%
(96.90%, 98.15%) (6.45%, 7.95%) (0.004, 0.012) (0.033, 0.046) (90.1%, 96.9%)

Panel B: Comparison of different estimators under m= 6

Estimator CDR MAPE MSE MAE BAI

LA
92.05% 27.35% 0.080 0.166 73.0%
(90.70%, 93.40%) (23.81%, 30.89%) (0.056, 0.105) (0.147, 0.186) (66.8%, 79.2%)

LR
94.88% 18.42% 0.073 0.136 75.5%
(94.10%, 95.67%) (16.61%, 20.24%) (0.038, 0.108) (0.118, 0.155) (69.4%, 81.6%)

PDL s p
84.23% 111.70% 2.172 0.874 28.0%
(82.54%, 85.93%) (98.07%, 125.33%) (1.736, 2.607) (0.793, 0.956) (21.7%, 34.3%)

SDL
93.07% 27.22% 0.051 0.150 68.0%
(92.17%, 93.96%) (25.16%, 29.29%) (0.037, 0.064) (0.136, 0.163) (61.5%, 74.5%)

DeDL
95.28% 13.33% 0.023 0.079 87.0%
(94.61%, 95.96%) (11.99%, 14.68%) (0.012, 0.033) (0.069, 0.090) (82.3%, 91.7%)

Panel C: Comparison of different estimators under m= 8

Estimator CDR MAPE MSE MAE BAI

LA
93.83% 28.37% 0.196 0.247 65.0%
(92.74%, 94.92%) (24.98%, 31.75%) (0.135, 0.256) (0.218, 0.276) (58.3%, 71.7%)

LR
95.51% 22.49% 0.209 0.222 75.6%
(94.87%, 96.14%) (20.03%, 24.96%) (0.128, 0.289) (0.186, 0.258) (69.2%, 82.0%)

PDL s p
78.89% 140.60% 3.825 1.246 11.5%
(77.01%, 80.77%) (128.28%, 152.91%) (3.059, 4.591) (1.136, 1.355) (7.0%, 16.0%)

SDL
94.89% 22.18% 0.072 0.153 67.5%
(94.25%, 95.53%) (20.20%, 24.15%) (0.025, 0.120) (0.133, 0.174) (61.0%, 74.0%)

DeDL
95.53% 13.49% 0.049 0.099 82.0%
(94.92%, 96.15%) (11.82%, 15.15%) (0.007, 0.092) (0.079, 0.118) (76.6%, 87.4%)

Panel D: Comparison of different estimators under m= 10

Estimator CDR MAPE MSE MAE BAI

LA
95.01% 31.54% 0.326 0.311 58.8%
(93.96%, 96.05%) (24.23%, 38.84%) (0.152, 0.500) (0.251, 0.371) (47.7%, 69.8%)

LR
95.51% 25.28% 0.359 0.305 62.0%
(94.87%, 96.14%) (21.73%, 28.83%) (0.146, 0.572) (0.240, 0.369) (52.3%, 71.7%)

PDL s p
77.27% 163.85% 5.360 1.563 5.0%
(75.50%, 79.03%) (151.47%, 176.22%) (4.527, 6.193) (1.448, 1.677) (2.0%, 8.0%)

SDL
94.27% 26.37% 0.077 0.195 56.2%
(93.21%, 95.33%) (22.97%, 29.78%) (0.054, 0.100) (0.171, 0.220) (45.1%, 67.4%)

DeDL
94.54% 16.59% 0.046 0.127 78.8%
(93.48%, 95.60%) (13.39%, 19.78%) (0.026, 0.067) (0.103, 0.150) (69.6%, 87.9%)

Note: All experiments are replicated 200 times with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
effects are (0.68,1.06), (1.09,1.30), (1.45,1.71), and (1.54,2.03) respectively in Panel A, Panel B, Panel C, and Panel D.
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Table 9 Performance of PDL Estimators

Panel A: Comparison of different estimators under m= 4

Estimator CDR MAPE MSE MAE BAI

PDL s p
88.59% 68.83% 0.867 0.433 56.0%
(87.02%, 90.17%) (60.76%, 76.89%) (0.572, 1.163) (0.378, 0.488) (49.1%, 62.9%)

PDL s a
95.16% 16.01% 0.012 0.075 78.0%
(94.27%, 96.04%) (14.49%, 17.53%) (0.009, 0.016) (0.068, 0.083) (72.2%, 83.8%)

PDL l p
89.12% 60.15% 0.493 0.356 56.0%
(87.61%, 90.64%) (53.09%, 67.20%) (0.375, 0.610) (0.319, 0.393) (49.1%, 62.9%)

PDL l a
96.34% 12.55% 0.006 0.052 86.5%
(95.57%, 97.12%) (11.20%, 13.89%) (0.004, 0.007) (0.048, 0.057) (81.7%, 91.3%)

Panel B: Comparison of different estimators under m= 6

Estimator CDR MAPE MSE MAE BAI

PDL s p
84.23% 111.70% 2.172 0.874 28.0%
(82.54%, 85.93%) (98.07%, 125.33%) (1.736, 2.607) (0.793, 0.956) (21.7%, 34.3%)

PDL s a
95.04% 20.03% 0.021 0.104 70.5%
(94.43%, 95.65%) (18.39%, 21.67%) (0.017, 0.024) (0.096, 0.113) (64.1%, 76.9%)

PDL l p
83.87% 111.37% 1.748 0.789 25.0%
(82.33%, 85.40%) (99.17%, 123.57%) (1.357, 2.138) (0.712, 0.866) (18.9%, 31.1%)

PDL l a
95.73% 16.91% 0.015 0.085 68.0%
(95.05%, 96.42%) (14.93%, 18.89%) (0.012, 0.019) (0.077, 0.093) (61.5%, 74.5%)

Panel C: Comparison of different estimators under m= 8

Estimator CDR MAPE MSE MAE BAI

PDL s p
78.89% 140.60% 3.825 1.246 11.5%
(77.01%, 80.77%) (128.28%, 152.91%) (3.059, 4.591) (1.136, 1.355) (7.0%, 16.0%)

PDL s a
95.04% 20.03% 0.021 0.104 70.5%
(94.43%, 95.65%) (18.39%, 21.67%) (0.017, 0.024) (0.096, 0.113) (64.1%, 76.9%)

PDL l p
80.80% 125.38% 3.059 1.098 10.0%
(79.15%, 82.44%) (114.46%, 136.29%) (2.347, 3.770) (1.001, 1.195) (5.8%, 14.2%)

PDL l a
95.43% 20.24% 0.035 0.137 57.5%
(94.90%, 95.95%) (18.36%, 22.13%) (0.028, 0.041) (0.126, 0.148) (50.6%, 64.4%)

Panel D: Comparison of different estimators under m= 10

Estimator CDR MAPE MSE MAE BAI

PDL s p
77.27% 163.85% 5.360 1.563 5.0%
(75.50%, 79.03%) (151.47%, 176.22%) (4.527, 6.193) (1.448, 1.677) (2.0%, 8.0%)

PDL s a
95.14% 24.87% 0.052 0.173 43.0%
(94.69%, 95.59%) (22.64%, 27.11%) (0.044, 0.061) (0.160, 0.185) (36.1%, 49.9%)

PDL l p
76.03% 159.58% 5.436 1.472 6.0%
(73.04%, 79.01%) (124.10%, 195.06%) (3.533, 7.339) (1.224, 1.720) (1.2%, 10.8%)

PDL l a
95.67% 19.66% 0.033 0.140 56.0%
(94.82%, 96.53%) (17.00%, 22.31%) (0.025, 0.041) (0.122, 0.157) (41.7%, 70.3%)

Note: All experiments are replicated 200 times with 95% CIs reported in parentheses.

We first compare estimators within each panel in Table 8. We observe the following consistent patterns

across all panels. First, DeDL outperforms (or no significant difference) LA, LR, PDL s p and SDL under

all metrics, which validates our theory and provides strong evidence for the advantage of our method. In

particular, DeDL increases the success rate of both CDR and BAI, and decreases MAPE, MSE, and MAE

compared to SDL by a significant margin. This demonstrates the value of debiasing in the influence function

(5). Second, generally, LA and LR perform worse than SDL, demonstrating the advantage of neural networks

over the linear method, despite the fact that that SDL can still be asymptotically biased.
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Comparing across different panels, we observe that the performance of all estimators becomes worse when

m grows larger. In particular, the performance of BAI decreases fast due to the exponentially increased num-

ber of combinations. Even so, DeDL can still successfully identify the best arm among 1,024 combinations

with a relatively high probability of 78.8% when m = 10. We may remark on the underlying mechanisms

behind these observed degenerating performances. On the one hand, intuitively, due to the sigmoid link func-

tion setup, when the number of field experiments gets larger, the treatment effect becomes more nonlinear.

It creates difficulty for the LA estimator. Therefore, the performance of LA worsens due to its inherent lack

of model richness. On the other hand, with the correct link function specification, one may expect that the

performance of SDL and DeDL should be relatively stable because of their modeling power. However, since

we fix the same DNN structure with a constant number of 10 hidden nodes across all experiments for a fair

comparison with LA, the model complexity of neural networks is limited by design. We have verified offline

that we can increase the number of hidden nodes when m = 6,8,10 to achieve a similar performance as

m= 4. We skip the detailed discussion here due to the space limit. For this reason, we are confident that the

difficulty in estimation and inference from an increased m can be mitigated by increasing the network struc-

ture complexity, so without loss of generality, in all experiments in the following subsections, we maintain

m= 4 for computation efficiency.

We report the performance of PDL estimators in a separate Table 9 due to the bad performance. The

subscripts s and l represent different widths of neural nets, with 10 and 40 hidden nodes for hidden layers,

resulting in the DNN structure (dx + dt + 1)-10-ReLU-10-ReLU-10-ReLU-1 and (dx + dt + 1)-40-ReLU-40-

ReLU-40-ReLU-1, respectively The subscripts p and a represent the training samples generated from partially

observed treatments or all treatments. For a fair comparison to estimators in Table 8, we should focus on

PDL s p with partially observed treatments and similar DNN size as SDL. The training stopping criteria

is set the same as SDL with 0.3 validation loss threshold. Note that with partially observed combinations,

both PDL s p and PDL l p perform worse than all other estimators under all metrics. This is due to the bad

performance of the out-of-sample test under the unobserved treatments, rather than the bad approximation

ability of DNN. Because one can notice that when we increase the DNN width from 10 to 40, the performance

only slightly increases. One can also notice that PDL indeed has much better in-sample tests. Because when

we incorporate data from all treatment combinations in the training, the resulting estimators PDL s a and

PDL l a have comparable performance with the best estimator DeDL.

It is within the expectation that PDL with partially observed treatments has such a bad performance

because it can only access the data generated by base treatment level, m single experiment data, and only

one treatment level with interaction (1,1,0, . . . ,0). It means that it is almost impossible for PDL to learn

interaction between different experiments. Unlike LR and SDL, which put the structured form of experimental

interaction, PDL only aims at increasing the performance of in-sample outcome prediction, totally ignoring

the out-of-sample performance. One may argue whether it is due to the over-fitting of PDL. To answer the

question of why PDL performs badly in more detail, we do a further investigation. To simplify the discussion,

we conduct an extra synthetic experiment withm= 3, and report the result in Figure 12. Each point in scatter

plots represents the values of real ATE (x-axis) and predicted ATE (y-axis). From left to right, we visualize
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the performance of LR, PDL-base (i.e., PDL s p), PDL-dropout (i.e., PDL s p with p= 0.1 dropout regularizer

after each activation layer), and PDL-L1 (i.e., PDL s p with L1 regularization loss over DNN parameters with

fine-tuned weight 0.05). Four subfigures in the upper panel show the in-sample performance, while lower

panel subfigures show the performance under unobserved treatment combinations. Notice that PDL-base has

better in-sample performance than LR as the data points are more concentrated around true line y= x, but

PDL-base has the worst out-of-sample performance. Although LR assumes linear extrapolation of treatment

effects, in our example, most scatter points in the out-of-sample test are still well concentrated around

y = x except clear patterns of overestimate when absolute ATE increases. When applying regularizations,

PDL-dropout and PDL-L1 have deteriorated in-sample performance with points less concentrated around the

true line while improving out-of-sample performance. But we highlight that we generally do not know the

out-of-sample ground-truth ATE in practice, which makes it difficult to guide the selection of regularizers.

We also try other regularizers, e.g., early stopping, L2 parameter weights, and smaller network sizes. It is

still not comparable to LR. Due to the bad performance of PDL with partially observed treatments, we do

not report its performance in the following simulations.
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Figure 12 LR and PDL Estimator Comparison

D.2. Complete Results of Experiments in Subsection 5.2

The complete results from this set of experiments are documented in Table 11, the columns of which are the

same as Table 8. Notice that estimators LA and LR have the same performance when decreasing the DNN

convergence rate with increasing δ. Thus, we report their performance in Panel A separately. When comparing

results within panels B, C, and D, we can observe that DeDL significantly improves the performance of

SDL by decreasing MSE, and MAE, as well as increasing BAI, while CDR and MAPE are only marginally

improved. With increasing δ, SDL and DeDL are getting worse under all performance metrics due to the

larger bias. However, even with this being said, DeDL is still significantly better than LA and LR even when
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Table 10 Performance of PDL with Regularizers

Estimator CDR MAPE MSE MAE BAI

LA
93.56% 27.44% 0.705 0.408 89.0%
(92.06%, 95.07%) (22.60%, 32.29%) (0.504, 0.905) (0.359, 0.457) (84.6%, 93.4%)

LR
95.50% 26.01% 0.654 0.389 91.5%
(94.37%, 96.63%) (20.56%, 31.45%) (0.449, 0.859) (0.335, 0.443) (87.6%, 95.4%)

PDL-base
91.62% 52.68% 2.930 0.762 73.0%
(90.22%, 93.03%) (44.27%, 61.09%) (2.104, 3.756) (0.675, 0.849) (66.8%, 79.2%)

PDL-dropout
90.81% 35.74% 0.967 0.504 63.5%
(89.17%, 92.46%) (31.43%, 40.04%) (0.739, 1.195) (0.453, 0.555) (56.8%, 70.2%)

PDL-L1
92.00% 33.64% 1.274 0.426 84.5%
(90.25%, 93.75%) (27.96%, 39.32%) (0.513, 2.035) (0.354, 0.498) (79.4%, 89.6%)

Note: All experiments are replicated 200 times under m= 3. 95% CIs reported in parentheses.

δ= 0.3 as shown in Panel D. In summary, DeDL is consistently better than other estimators even with large

DNN estimation biases as long as the link function is not misspecified.

Table 11 DNN Convergence Violation Result

Panel A: Performance of Benchmarks

Estimator CDR MAPE MSE MAE BAI

LA
94.56% 19.93% 0.085 0.179 92.0%
(93.69%, 95.44%) (17.94%, 21.93%) (0.066, 0.104) (0.162, 0.195) (88.2%, 95.8%)

LR
96.88% 13.59% 0.046 0.127 94.0%
(96.21%, 97.54%) (12.11%, 15.08%) (0.036, 0.056) (0.115, 0.139) (90.7%, 97.3%)

Panel B: Comparison of different estimators under δ= 0.1

Estimator CDR MAPE MSE MAE BAI

SDL
96.97% 4.98% 0.013 0.074 92.5%
(96.32%, 97.62%) (4.58%, 5.38%) (0.010, 0.015) (0.066, 0.083) (88.8%, 96.2%)

DeDL
98.56% 5.04% 0.003 0.031 97.0%
(98.12%, 99.01%) (4.32%, 5.76%) (0.002, 0.003) (0.028, 0.035) (94.6%, 99.4%)

Panel C: Comparison of different estimators under δ= 0.2

Estimator CDR MAPE MSE MAE BAI

SDL
94.19% 11.06% 0.061 0.170 85.5%
(93.19%, 95.19%) (10.28%, 11.83%) (0.049, 0.072) (0.153, 0.186) (80.6%, 90.4%)

DeDL
96.31% 11.10% 0.016 0.078 95.5%
(95.50%, 97.12%) (9.46%, 12.74%) (0.012, 0.020) (0.069, 0.087) (92.6%, 98.4%)

Panel D: Comparison of different estimators under δ= 0.3

Estimator CDR MAPE MSE MAE BAI

SDL
93.44% 15.53% 0.145 0.259 80.0%
(92.48%, 94.39%) (14.33%, 16.73%) (0.118, 0.173) (0.232, 0.286) (74.4%, 85.6%)

DeDL
94.63% 12.78% 0.032 0.108 92.5%
(93.74%, 95.51%) (11.05%, 14.50%) (0.024, 0.039) (0.095, 0.120) (88.8%, 96.2%)

Note: All simulations are replicated 200 times with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
effect is (1.45,1.65) in all Panels.

D.3. Complete Results of Experiments in Subsection 5.3

Table 12 shows the complete simulation results. Comparing across different panels representing different

values of γ, one can observe that when the link function gets more misspecified, SDL and DeDL estimators get
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worse under all metrics. While the MAPE, MSE, and MAE performances of LA and LR are not significantly

deteriorated, considering the increased absolute treatment effects listed in table notes. When the model is

not misspecified or marginally misspecified, i.e., γ ∈ {0,1,3}, SDL and DeDL work no worse than LA in all

performance metrics. When γ = 1, DeDL can only marginally improve the performance of SDL for all metrics.

However, when γ is increased to 3, we can observe that DeDL has worse MSE performance than SDL. Even

worse, when γ is increased to 5, DeDL is not better than SDL under all performance metrics. In summary,

we still recommend using DeDL when γ ∈ {0,1,3}.

D.4. Imbalanced Covariates

This set of simulations investigates a practical setting where the observed X distribution deviates from the

population. We call this setting as imbalanced covariates, i.e., X covariates imbalance between any treatment

level t∈ {0,1}m and population X distribution. The imbalanced covariates affect both training and inference

stages, invalidating the DeDL estimators. We discuss how to do rebalancing to get precise and trustworthy

estimates of ATEs.

We adopt exactly the same simulation setup to Section 5.2 except that the observed covariates follow a

different distribution. More specifically, the last dimension of x follows the exponential distribution with

rate λ∈ {2.0,1.0,0.5} instead of the uniform distribution U(0,1). Note that the ground truth ATEs are still

calculated using the uniform distributed x. We highlight that although this setup is relatively simple because

the observed covariates uniformly deviate from the true distribution across all treatment combinations while

in practice the observed covariates x may even follow different distributions under different t, this simulation

result still demonstrates the importance of rebalancing.

To reconcile the imbalanced covariates issue, one can do stratified sampling on sampled units to match

the covariate distribution over the population, as we implemented in our empirical study. There are also

many re-randomization techniques to improve covariate balance in experiments. We refer interested readers

to Morgan and Rubin (2012), Li et al. (2020). But in this simulation study, to keep the discussion simple, we

use the same stratified sampling procedure in our empirical study. Specifically, we focus on the imbalanced

covariate dimension with exponential distribution. First, we do stratified sampling to only keep the data

with x in the support [0,1]dX . Then we do stratified sampling to make sure the imbalanced dimension of x

is rebalanced in the sense that the sample sizes in [0,1]dX−1 × [0,0.5) and [0,1]dX−1 × [0.5,1] are the same.

Note that by stratified sampling, we may discard some samples and sacrifice efficiency. We also conducted

the stratified sampling with higher accuracy, e.g., the numbers of samples in five buckets with 0.2 bandwidth

are the same.

We report the MAEs for different estimators with balanced and imbalanced covariates in Figure 13(a)

and (b), respectively. Using the imbalanced covariates for both training and inference, Figure 13(a) reports

the comparison results. The complete result is listed in Table 13. After the stratified sampling, we use the

rebalanced covariates for both training and inference and show the result in Figure 13(b). λ∈ {2.0,1.0,0.5}

indicates the growing imbalance level. The key observation is that when the data is too imbalanced with

λ ∈ {1.0,0.5}, DeDL is not precise. After the stratified sampling, de-biasing is still trustworthy, reducing

MAE compared to SDL.
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Table 12 Model Misspecification Result

Panel A: Comparison of different estimators under γ = 0

Estimator CDR MAPE MSE MAE BAI

LA
94.78% 20.69% 0.074 0.167 94.5%
(93.80%, 95.76%) (18.30%, 23.08%) (0.056, 0.091) (0.151, 0.182) (91.3%, 97.7%)

LR
97.38% 12.81% 0.043 0.125 94.5%
(96.81%, 97.94%) (11.53%, 14.08%) (0.033, 0.053) (0.112, 0.138) (91.3%, 97.7%)

SDL
97.71% 10.07% 0.014 0.075 96.5%
(97.18%, 98.26%) (8.92%, 11.21%) (0.010, 0.018) (0.068, 0.081) (93.9%, 99.1%)

DeDL
99.28% 3.23% 0.002 0.024 99.0%
(98.99%, 99.57%) (2.68%, 3.78%) (0.001, 0.003) (0.021, 0.027) (97.6%, 100.4%)

Panel B: Comparison of different estimators under γ = 1

Estimator CDR MAPE MSE MAE BAI

LA
95.56% 21.76% 0.091 0.189 87.5%
(94.77%, 96.35%) (19.29%, 24.23%) (0.069, 0.112) (0.171, 0.206) (82.9%, 92.1%)

LR
97.38% 12.85% 0.042 0.124 88.0%
(96.79%, 97.96%) (11.45%, 14.24%) (0.033, 0.052) (0.113, 0.136) (83.5%, 92.5%)

SDL
97.22% 11.55% 0.027 0.100 90.5%
(96.57%, 97.86%) (10.40%, 12.70%) (0.019, 0.035) (0.091, 0.109) (86.4%, 94.6%)

DeDL
98.81% 5.67% 0.014 0.056 92.5%
(98.33%, 99.29%) (4.87%, 6.47%) (0.008, 0.020) (0.049, 0.064) (88.8%, 96.2%)

Panel C: Comparison of different estimators under γ = 3

Estimator CDR MAPE MSE MAE BAI

LA
94.62% 18.07% 0.112 0.210 89.0%
(93.71%, 95.54%) (16.18%, 19.96%) (0.075, 0.148) (0.190, 0.229) (84.6%, 93.4%)

LR
97.09% 12.10% 0.050 0.135 88.0%
(96.46%, 97.73%) (10.77%, 13.43%) (0.036, 0.063) (0.122, 0.149) (83.5%, 92.5%)

SDL
97.00% 15.10% 0.123 0.199 90.5%
(96.33%, 97.67%) (13.54%, 16.66%) (0.088, 0.159) (0.180, 0.218) (86.4%, 94.6%)

DeDL
97.50% 13.44% 0.151 0.181 92.5%
(96.77%, 98.22%) (10.87%, 16.00%) (0.096, 0.207) (0.156, 0.207) (88.8%, 96.2%)

Panel D: Comparison of different estimators under γ = 5

Estimator Significance MAPE MSE MAE BAI

LA
95.34% 19.93% 0.155 0.263 88.0%
(94.47%, 96.22%) (17.12%, 22.74%) (0.125, 0.185) (0.241, 0.285) (83.5%, 92.5%)

LR
96.97% 12.05% 0.077 0.170 92.5%
(96.21%, 97.73%) (10.28%, 13.81%) (0.053, 0.102) (0.153, 0.187) (88.8%, 96.2%)

SDL
95.90% 17.24% 0.241 0.277 88.5%
(95.09%, 96.72%) (15.21%, 19.26%) (0.183, 0.299) (0.251, 0.304) (84.0%, 93.0%)

DeDL
95.46% 23.20% 0.559 0.333 84.5%
(94.43%, 96.50%) (18.31%, 28.09%) (0.375, 0.743) (0.284, 0.381) (79.4%, 89.6%)

Note: All simulations are replicated 200 times with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
effects are (1.45,1.65), (1.52,1.72), (2.06,2.36), and (2.71,3.07) respectively in Panel A, Panel B, Panel C, and Panel D.
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(a) (b)

Figure 13 MAE comparison among estimators under the imbalanced covariates setting. Panel (a) shows the

performance of LA,LR,SDL, and DeDL before rebalancing. Panel (b) presents the performance after rebalancing.
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Table 13 Imbalanced Covariates Result

Estimator CRD MAPE MSE MAE BAI

Panel A: Comparison of different estimators under λ= 2.0

Before Covariates Rebalancing

LA
91.22% 32.03% 0.104 0.215 87.5%
(89.99%, 92.45%) (28.21%, 35.85%) (0.081, 0.127) (0.197, 0.233) (82.9%, 92.1%)

LR
96.00% 18.92% 0.047 0.136 91.0%
(95.32%, 96.68%) (16.87%, 20.97%) (0.036, 0.059) (0.123, 0.149) (87.0%, 95.0%)

SDL
96.12% 15.84% 0.024 0.101 95.0%
(95.42%, 96.83%) (14.09%, 17.60%) (0.018, 0.031) (0.093, 0.109) (92.0%, 98.0%)

DeDL
96.44% 11.10% 0.007 0.061 95.0%
(95.74%, 97.13%) (9.71%, 12.48%) (0.006, 0.008) (0.057, 0.065) (92.0%, 98.0%)

After Covariates Rebalancing

LA
93.94% 27.24% 0.102 0.193 92.0%
(92.85%, 95.02%) (23.10%, 31.38%) (0.074, 0.129) (0.173, 0.212) (88.2%, 95.8%)

LR
96.44% 18.36% 0.044 0.128 93.5%
(95.75%, 97.13%) (15.69%, 21.03%) (0.033, 0.056) (0.116, 0.141) (90.1%, 96.9%)

SDL
96.62% 14.47% 0.019 0.092 96.0%
(95.95%, 97.30%) (12.66%, 16.28%) (0.015, 0.023) (0.085, 0.099) (93.3%, 98.7%)

DeDL
97.66% 7.86% 0.006 0.049 98.0%
(97.11%, 98.20%) (6.66%, 9.05%) (0.004, 0.007) (0.045, 0.053) (96.0%, 100.0%)

Panel B: Comparison of different estimators under λ= 1.0

Before Covariates Rebalancing

LA
87.84% 82.23% 0.519 0.534 71.5%
(86.47%, 89.21%) (73.27%, 91.18%) (0.445, 0.593) (0.497, 0.571) (65.2%, 77.8%)

LR
90.44% 70.13% 0.371 0.455 72.0%
(89.36%, 91.51%) (62.66%, 77.60%) (0.321, 0.420) (0.426, 0.485) (65.7%, 78.3%)

SDL
90.53% 71.28% 0.304 0.419 76.0%
(89.41%, 91.66%) (63.36%, 79.20%) (0.260, 0.348) (0.391, 0.447) (70.0%, 82.0%)

DeDL
90.59% 68.73% 0.291 0.408 75.5%
(89.51%, 91.68%) (61.16%, 76.30%) (0.248, 0.334) (0.380, 0.436) (69.5%, 81.5%)

After Covariates Rebalancing

LA
91.44% 32.66% 0.109 0.218 88.0%
(90.29%, 92.58%) (28.67%, 36.66%) (0.086, 0.133) (0.199, 0.236) (83.5%, 92.5%)

LR
95.84% 20.03% 0.056 0.138 94.5%
(95.17%, 96.52%) (16.01%, 24.04%) (0.036, 0.076) (0.124, 0.152) (91.3%, 97.7%)

SDL
96.00% 15.04% 0.027 0.099 96.0%
(95.23%, 96.77%) (12.57%, 17.51%) (0.018, 0.036) (0.089, 0.108) (93.3%, 98.7%)

DeDL
96.47% 9.16% 0.008 0.053 96.0%
(95.84%, 97.10%) (7.23%, 11.08%) (0.004, 0.012) (0.047, 0.058) (93.3%, 98.7%)

Panel C: Comparison of different estimators under λ= 0.5

Before Covariates Rebalancing

LA
78.41% 186.87% 2.644 1.223 43.5%
(76.31%, 80.51%) (167.63%, 206.10%) (2.289, 2.999) (1.141, 1.304) (36.6%, 50.4%)

LR
80.84% 167.21% 2.097 1.084 47.0%
(78.92%, 82.77%) (150.48%, 183.94%) (1.811, 2.383) (1.012, 1.156) (40.0%, 54.0%)

SDL
81.50% 162.02% 1.737 0.996 51.0%
(79.51%, 83.49%) (144.89%, 179.15%) (1.503, 1.972) (0.930, 1.062) (44.0%, 58.0%)

DeDL
81.34% 163.63% 1.767 1.003 51.5%
(79.36%, 83.33%) (146.21%, 181.06%) (1.528, 2.005) (0.936, 1.070) (44.5%, 58.5%)

After Covariates Rebalancing

LA
88.78% 42.56% 0.158 0.273 84.0%
(87.40%, 90.17%) (37.80%, 47.32%) (0.126, 0.191) (0.248, 0.297) (78.9%, 89.1%)

LR
94.78% 22.60% 0.055 0.155 88.5%
(93.85%, 95.72%) (20.11%, 25.09%) (0.045, 0.065) (0.142, 0.168) (84.0%, 93.0%)

SDL
94.41% 19.69% 0.026 0.112 92.0%
(93.49%, 95.32%) (17.41%, 21.97%) (0.022, 0.030) (0.104, 0.121) (88.2%, 95.8%)

DeDL
94.75% 9.27% 0.005 0.053 93.5%
(93.87%, 95.63%) (8.32%, 10.21%) (0.005, 0.006) (0.050, 0.057) (90.1%, 96.9%)

Note: Note: All simulations are replicated 200 times with 95% CIs reported in parentheses. 95% CIs of average absolute
treatment effects are (1.45,1.65).
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