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Abstract

Digital platforms deliver numerous interventions to their users. One of their

main goals is to estimate the causal effect of these interventions. An ideal way

to answer this question is to run a fully randomized experiment. However, the

economic cost of such experiments is high, making alternative approaches based

on observational data appealing to digital platforms. In this paper, we study the

feasibility of using observational methods in the presence of algorithmic decision-

making. A central assumption needed for observational studies is the strong

ignorability assumption, which requires the unconfoundedness of the treatment

assignment, and an often-ignored part: overlap assumption that requires the

assignment to be non-deterministic. Although the setting created by algorithmic

decision-making satisfies the unconfoundedness assumption as the assignment

rule is known, the overlap assumption is often violated because these algorithms

generate deterministic recommendations. We theoretically show that the violation

of overlap can substantially bias the estimates of the average treatment effect from

observational data. We quantify this bias and discuss whether it is practically

relevant in digital platforms. To address this issue, we propose a novel solution

based on machine learning methods used for matrix completion that allows us to

recover the average treatment effect estimates if the underlying space of treatment

effects is low-rank. We use our algorithm to develop statistical tests to examine

whether the lack of overlap results in substantial bias in the main estimates of

the causal parameters. Finally, we validate our theoretical results using synthetic

data and discuss the implications.

Keywords: causal inference, machine learning, overlap assumption, unconfoundedness,

digital platforms, observational methods
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1 Introduction

Digital platforms deliver numerous interventions to their users every day. These interventions

can take different forms, such as push notifications on mobile phones, content recommendation

on streaming platforms, etc. At the core of this large-scale delivery of interventions are two

elements: data collection and algorithmic decision-making. Digital platforms collect massive

amounts of data from the users of their basic information such as demographics and their

behavioral characteristics such as their past browsing history. These data are then given as

inputs to algorithms that can efficiently process them and make real-time decisions, allowing

the platforms to deliver interventions at a very large scale.

An important question that digital platforms and academic researchers want to know the

answer to is the causal effect of these interventions. The gold standard in both research and

practice is to use randomized controlled trials (RCT) where some users randomly receive

the treatment, and some do not. This randomization, in turn, allows us to identify and

estimate the causal effect of an intervention. However, running fully randomized experiments

is not always in the interest of the platform, because experiments can come at the expense of

assigning a large group of users to sub-optimal interventions. Thus, it is crucially important for

these platforms to estimate the causal effects of interventions with their existing observational

data.

Both experimental and observational methods to estimate the causal effect of an inter-

vention rely on a set of assumptions called strong ignorability of the treatment assignment.

Strong ignorability assumption is a mix of two assumptions: (1) unconfoundedness of the

treatment assignment, which states that conditional on observed covariates, assignment to the

treatment is independent of potential outcomes, and (2) overlap or positivity of the treatment

assignment, which assumes that the assignment to the treatment is probabilistic, that is the

propensity score of the treatment is a probability strictly between zero and one. The part

that is often violated in observational studies is the unconfoundedness assumption. That is,

there are unobserved confounding factors that affect both the treatment assignment and the

outcome of interest. The presence of confounding, therefore, hampers researchers’ ability to

draw causal inference from observational studies.

What is different in digital platforms is that the unconfoundedness assumption is more

plausible than most settings. This is because the platform itself delivers the interventions

to users. As such, given the output of the algorithm used for decision-making at the digital

platform, assignment to a treatment is unconfounded. Even if the researcher does not

have access to the algorithmic output but the data used for algorithmic decision-making,
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it is still possible to satisfy the unconfoundedness assumption by learning the underlying

selection mechanism from data. This is increasingly an easier task with the development of

methods that combine causal inference with machine learning methods to capture complex

confoundedness in the data. Thus, the presence of the exact output of the algorithm or

high-dimensional data used for algorithmic decision-making serves as a strong motivation for

using observational methods in the context of digital platforms.

What arises as an important challenge is an often-ignored part of the ignorability as-

sumption: overlap or the requirement for the probabilistic assignment. Although algorithmic

decision-making helps platforms better use their interventions, many of these algorithms only

generate deterministic outputs. That is, one intervention will be shown with probability one,

and the rest of the interventions have zero probability of being shown. For example, the

promotion offered by a ride-sharing app is the deterministic output of an algorithm. In these

cases, the overlap assumption is violated, which leaves us with no theoretical guarantee on the

estimated treatment effects. In this paper, we consider the case for a digital platform whose

context satisfies unconfoundedness assumption because the algorithmic outputs are readily

available at the platform, but violates the overlap assumption because of the deterministic

assignment employed by the algorithms. To that end, we seek to answer the following sets of

research questions:

1. How does the lack of overlap bias the estimates of average treatment effect in obser-

vational studies that satisfy unconfoundedness assumption? Can the state-of-the-art

model-based and model-free approaches overcome this challenge?

2. How likely is this lack of overlap to cause bias in the average treatment effect estimates

from a practical standpoint?

3. What are the solutions to this problem, and under what assumptions do they work?

To answer these questions, we develop a simple framework that distinguishes between three

regions in the data based on the treatment assignment: (1) probabilistic assignment, where

the propensity score of the assignment is a number in the non-exclusive interval of (0, 1),

(2) deterministic assignment, where the treatment assignment happens deterministically

with probability one, i.e., propensity score for the treatment is one, and (3) deterministic

no-assignment, where the treatment assignment will not happen with probability one, i.e., the

propensity score for the treatment is zero. As such, the only region that satisfies the overlap

assumption is the one with the probabilistic assignment. We further define three conditional

average treatment effects (CATE) for each of these three regions to allow for the possibility
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that these estimands are different at the population level. This allows us to say something

concrete and testable about the magnitude of bias in our treatment effect estimates that is

caused by the lack of overlap.

Our theoretical analysis first shows that the conditional average treatment effect for the

regions with deterministic assignment is unidentified. We then consider the case where we

use the data from all the three regions with a known propensity score and examine how

well we can estimate the average treatment effect in this case. This mimics the setting at

digital platforms where the propensity scores are either known ex-ante or can be estimated

accurately. We also focus on the state-of-the-art model-based and model-free approaches to

estimate the average treatment effects such as double machine learning (Chernozhukov et al.,

2018a) and causal forests (Athey et al., 2019) to ensure that a poor modeling choice does

not drive the results of our analysis. Our analysis shows that all these methods can result in

substantial bias due to the lack of overlap even when the propensity score is known. In cases

where the propensity scores need to be estimated, this bias can be considerably larger.

On the bright side, our analysis shows that if the propensity scores are known, a large

class of observational methods can recover the only identifiable causal estimand in the data,

the conditional average treatment effect for the region with a probabilistic assignment. This

finding allows us to quantify the magnitude of bias in a concrete manner and arrive at an

important insight: the magnitude of bias in the ATE estimate can be arbitrarily large if

the overlap assumption is violated. We then carry out a series of analysis with simulated

data to verify our theoretical findings. In particular, we consider three different scenarios:

(1) known propensity scores, (2) unknown propensity scores under the full observability of

covariates that influence propensity scores, and (3) unknown propensity scores under the

partial observability of covariates that influence propensity scores. When propensity scores

are known, we find that model-based (e.g., Double Machine Learning) and model-free (Inverse

Propensity Scoring) approaches recover the conditional average treatment effect for the region

with probabilistic assignment, but fail to recover the true average treatment effect for the

population.

Next, we examine what will happen if the propensity scores are not known. We demonstrate

that the ATE estimates will no longer converge to the CATE for the probabilistic region,

even if the entire set of covariates that influence propensity scores are observed by the

researcher. In particular, we find that even trimming approaches do not work properly in

these settings. As expected, we find that this issue is exacerbated when the covariates that

influence propensity scores are only partially observed. Together, our analysis of settings
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where propensity scores need to be estimated highlight that even a data-rich environment

where every factor in the algorithmic decision-making is observed can generate estimates

with no proper interpretation. Thus, a data-rich environment is vastly insufficient for studies

of platforms that engage in algorithmic decision-making.

We then focus on the prevalence of this problem and ask the following question: to what

extent will this issue arise in practical contexts? In principle, if the assignment probability is

a function of the conditional average treatment effect for an observation, the lack of overlap

likely results in large biases in the estimates of average treatment effects. The problem is

that if the digital platform is also interested in optimizing the same causal estimand, the

optimal strategy for them is to assign interventions based on scores that are related to users’

conditional average treatment effects (Shalit et al., 2017; Wager and Athey, 2018). For

example, for each user, a ride-sharing app provides a promotion that is most profitable based

on their algorithm. Similarly, a mobile app uses an algorithm to identify the notification

that yields a better engagement outcome than all other actions. Therefore, the conditional

average treatment effect of the probabilistic region is not the same as the average treatment

effect for the entire population because the deterministic regions are likely selected from the

tails of the CATE distribution.

Once we establish the existence and prevalence of the lack of overlap in observational

studies involving digital platforms and the challenges it pose, we focus on the potential

solutions for this problem. We propose a framework that formulates the unidentifiability of

the conditional average treatment effect for the overlap-violating regions of the data as a

missing data problem. Although we cannot fix this problem with a single study at hand, we

can potentially use the information across studies to help with this missing data problem. In

particular, if we have multiple studies with different treatments (e.g., price discount in one

study, and push notification for a loyalty program in another) whose individualized effects

come from a low-rank space, we can use matrix completion methods to impute the conditional

average treatment effect for the overlap-violating regions. In particular, we treatment CATE

estimates from the overlap-violating regions as question marks in a matrix and only estimate

CATE for units whose assignment is probabilistic. We then exploit the variation among those

entries in the matrix to complete the matrix for the deterministic regions. The intuition for

this approach is as follows: for a user i whose CATE is unidentifiable because their assignment

to the treatment in a study is deterministic, we can exploit the variation in how similar users

responded to similar treatments when their assignment to those treatments were probabilistic.

Once we complete the matrix for the parts that are formerly unidentified, we can correct for
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the bias in the ATE estimates.

Our proposed method further allows us to offer a test for cases where the propensity scores

are unknown. The main challenge in these settings is that we cannot easily distinguish the

region with a probabilistic assignment from those with a deterministic assignment. As such,

the classification rule is often arbitrary, depending on the sensitivity of the study. We develop

a test that finds the magnitude of bias for different trimming thresholds. For example, for

a 0.1 threshold, we consider the estimated propensities between 0 to 0.1 as a deterministic

no-assignment, those between 0.1 and 0.9 as a probabilistic assignment, and those between

0.9 and 1 as a deterministic assignment. Once we run this procedure for every trimming

threshold, we will get a curve that allows testing the magnitude of bias caused by the lack of

overlap in our study.

Lastly, we deliver a series of simulation studies to establish the performance of our proposed

algorithm. We consider a wide range of deterministic assignment problems that may arise in

real settings. Each case corresponds to a specific missingness pattern in the estimated CATE

matrix due to identifiability issues. To that end, we consider three specific types of missingness

patterns: (1) random, (2) CATE-dependent, and (3) user-dependent. When missingness is at

random, we show that both Double ML (or other conventional ATE estimation approaches)

and our proposed method are able to recover ATE across studies. However, our proposed

method has lower error as it exploits the variation across studies, which makes it suitable

for small-data environments. In settings with CATE-dependent missingness, we simulate

cases where observations with higher or lower CATEs are more likely to have a deterministic

assignment or no-assignment. We show that the ATE estimates under conventional approaches

such as Double ML are largely biased. However, our proposed method can reliably recover

the true ATE. Finally, we consider two forms of user-dependent missingness where some users

are more likely to have deterministic assignments or no-assignments. We show that as long

as the data for some users are not entirely missing, our proposed algorithm can recover the

true ATE. We further establish the boundary conditions of our algorithm.

In sum, our paper makes several contributions to the literature. First, we identify an

important challenge for the digital platforms that employ algorithmic decision-making. While

most of the applied causal inference literature is focused on satisfying unconfoundedness using

state-of-the-art causal machine learning methods, we show that the fundamental problem in

digital platforms is, in fact, the overlap violation. We further quantify the bias caused by the

violation of the overlap assumption and discuss when we should expect this bias to be higher.

Notably, we propose a novel machine learning approach for matrix completion that can be
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used to correct for the biased caused due to the lack of overlap. Our approach only requires

a large treatment space, which makes it easily applicable to digital platforms that deliver

numerous interventions to their users. We further develop a statistical test that can be used

to assess whether the lack of overlap is detrimental to an observational study.

2 Related Literature

Broadly, our paper relates to the causal inference literature that aims to estimate treatment

effects (Neyman, 1923; Rubin, 1974; Imbens and Rubin, 2015). Following the influential paper

by (Rosenbaum and Rubin, 1983), much of this literature focuses on a set of assumptions

known as the strong ignorability of the treatment assignment, which is a combination of

two assumptions: unconfoundedness and overlap. While unconfoundedness assumption has

received considerable attention in the literature, overlap has often been viewed as an easier

assumption to be satisfied in real settings. As such, less attention has been paid to the overlap

assumption in prior studies on causal inference with a few notable exceptions that focus on

various aspects of the overlap assumption such as studying sample trimming strategies (Crump

et al., 2009; Ma and Wang, 2020; D’Amour et al., 2021) and quantifying the uncertainty

in overlap-violating regions of observational data (Jesson et al., 2020). Motivated by the

context of algorithmic decision-making in digital platforms and the prevalent violation of

this assumption in such contexts, we study the overlap assumption – how it arises and what

theoretical implications it has for treatment effect estimates. We contribute to this literature

by characterizing the bias induced by the lack of overlap and identifying cases where the

lack of overlap can be detrimental in the sense that the conventional solutions such as using

more competent causal machine learning models and sample trimming do not solve the

problem. We further add to this literature by proposing a machine learning approach based

on matrix completion that imposes low-rank assumptions on the treatment effects space to

help researchers test whether the lack of overlap can cause substantial bias in treatment

effects and correct for this bias.

Second, our paper relates to the literature on the growing intersection of machine learning

and causal inference. In recent years, a series of papers combined the insights from the causal

inference literature with the flexibility and scalability of machine learning models in learning

patterns from data to develop new methods to estimate causal estimands such as average

treatment effect (Belloni et al., 2014; Hartford et al., 2017; Chernozhukov et al., 2018a; Athey

et al., 2018; Shi et al., 2019) or conditional average treatment effect (Shalit et al., 2017;

Athey et al., 2019; Chernozhukov et al., 2018b; Nie and Wager, 2021). In marketing, many

recent papers used these methods in a variety of application domains such as personalized
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promotions (Simester et al., 2020a,b), customer relationship management (Ascarza, 2018),

personalized free-trial (Yoganarasimhan et al., 2022), ad targeting and sequencing (Rafieian

and Yoganarasimhan, 2021; Rafieian, 2022), and personalized versioning (Goli et al., 2022b).

We add to this literature in two separate ways. First, we theoretically characterize the

performance of causal machine learning methods when the overlap assumption is violated.

Second, we propose a machine learning algorithm that exploits the similarities between the

treatments in the treatment space and overcomes the issue of overlap violation under certain

assumptions.

Finally, our paper relates to the literature on matrix completion. Although the popularity

of these models stems from the Netflix Prize for movie recommendation (Bennett et al.,

2007), the application of matrix completion models is much broader to any setting where the

underlying structure of matrix with missing data is low-rank (Mazumder et al., 2010). The

relevance and success of matrix completion models motivated a large stream of theoretical

work that establish the main theoretical guarantees of these models (Candès and Recht, 2009;

Candès and Tao, 2010; Recht, 2011; Gross, 2011; Negahban and Wainwright, 2011). Recent

work has focused on the intersection of matrix completion and causal inference and found

useful applications (Kallus et al., 2018; Athey et al., 2021; Agarwal et al., 2021). Our work

adds to this literature by formulating the unidentifiability of the overlap-violating parts of

data as a missing data problem and apply matrix completion models to exploit cross-study

variation and recover the true causal parameters.

3 Algorithmic Decision-making

3.1 Problem Definition

We first formally define our problem. Consider a general case where a digital platform delivers

interventions to observation units. The observation unit is often a user in digital platforms.

When an observation unit is available to receive the intervention, the platform chooses from

the set of all interventions, which is denoted by W in our problem. For example, this set

can be the list of different ads to show to the user. For observation i, let Wi denote the

intervention delivered to the user, and Xi denote the vector of observation characteristics

from the super set X . As customary in digital platforms, the vector of characteristics Xi is

often high-dimensional with detailed information about the user such as demographics and

past user history, as well as contextual factors such as the timestamp of the observation.

To determine which intervention to deliver in each observation, digital platforms generally

use an algorithm that scalably uses the feature vector Xi and returns an intervention that
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optimizes the platform’s objective. For any intervention w ∈ W, we characterize this

algorithmic policy as a function πw : X → [0, 1], where πw(Xi) determines the probability

that the platform chooses intervention w in observation i. The function πw is the same as

the propensity score function in the causal inference literature. Digital platforms often have

access to this function.

Once the intervention is delivered, the platform collects the outcome of interest Yi for

observation i. This outcome is defined based on the problem under the study. For example,

this outcome can be clicks or usage for push notifications. Following the potential outcomes

framework, we define Yi(w) for each w ∈ W as the potential outcome we would have observed

under intervention w. For simplicity and greater consistency with the causal inference

literature, we focus our analysis on the binary case with one treatment and one control

group.1 As such, Wi = 1 means that observation i has received the treatment, whereas Wi = 0

refers to the case where observation i has received the control. Hence, for each observation i,

there are two potential outcomes Yi(0) and Yi(1).

With this notation in place, we now define two estimands that researchers and practitioners

often want to estimate as follows:

Definition 1. The Average Treatment Effect (ATE) is denoted by τ ∗ and defined as follows:

τ ∗ = E[Yi(1)− Yi(0)], (1)

where the expectation is taken over the entire population.

The Conditional Average Treatment Effect (CATE) is the same as ATE conditional on a

certain value of the covariate vector. We denote CATE as τ ∗(x) and define it as follows:

τ ∗(x) = E[Yi(1)− Yi(0) | Xi = x]. (2)

The prior literature on causal inference has proposed a wide variety of methods to estimate

ATE and CATE (Imbens and Rubin, 2015). These methods require a set of assumptions

known as (1) Stable Unit Treatment Value Assumption (SUTVA), and (2) Strong Ignorability

of Treatment Assignment. SUTVA states that there is a single version of each treatment

and the units do not interfere with each other. In digital settings where treatments are

well-defined with a single version and a unit’s treatment status and action is isolated in the

sense that it does not change the treatment status of other units, SUTVA would be more

1The results are easily generalizable to the case with multiple treatment levels.

10



plausible. In this paper, we consider the cases where SUTVA holds to exclusively focus on

cases where the ignorability assumption is violated.2

The second set of assumptions is known as Strong Ignorability assumption, which is

defined in the seminal paper by Rosenbaum and Rubin (1983) as follows:

Definition 2. The assignment to treatment is strongly ignorable given the observed covariates

Xi, if we have:

• Unconfoundedness: The potential outcomes are independent of the treatment assignment

conditional on observed covariates:

{Yi(1), Yi(0)} ⊥⊥ Wi | Xi, (3)

which is known as the unconfoundedness assumption and referred to with other names

such as selection on observables, conditional exogeneity, etc.

• Overlap: The assignment to the treatment is probabilistic, that is:

0 < Pr(Wi = 1 | Xi) < 1, (4)

where Pr(Wi = 1 | Xi) is the same as the propensity score when w = 1, that is, π(Xi).
3

This assumption is often referred to as the overlap or positivity assumption and guarantees

that the assignment to the treatment is not deterministic.

The strong ignorability assumption serves as the foundation for studies of causal inference.

The most common challenge in these studies is often the unobservability of the assignment

rule, which results in the confoundedness of the treatment. That is, there is an unobservable

variable Zi that affects both the treatment assignment and the outcome, thereby resulting in

selection bias in the estimates of average treatment effect.

The key difference in digital platforms that employ algorithmic decision-making is that the

assignment rule is often fully observable. That is, the platform can easily store the Xi used

for algorithmic decision-making and the output of the algorithm π(Xi), which is shown to be

sufficient to satisfy the unconfoundedness assumption (Rosenbaum and Rubin, 1983). Hence,

observational studies on digital platforms do not suffer from the well-known confoundedness

or endogeneity problem, since there is no selection on unobservables. What makes these

observational studies challenging is the commonly ignored part of the strong ignorability

2A series of recent studies show cases where SUTVA is violated in digital settings. Please see Goli et al.
(2022a) for a great summary of these cases.
3For brevity, instead of π1(Xi), we use π(Xi).
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assumption, which requires the treatment assignment to be probabilistic. Although probabilis-

tic assignment is plausible in more traditional studies without algorithmic decision-making

in the background, algorithms used by digital platforms to deliver interventions are often

deterministic. That is, π(Xi) can be equal to zero or one depending on Xi.

Our goal in this paper is to study the consequences of the lack of overlap in observational

studies on digital platforms. As such, we can formally define the problem as follows:

Definition 3. Consider a digital platform that uses data D = {Yi,Wi, Xi, π(Xi)}. The main

estimands the platform wants to estimate are the average treatment effect (ATE) for the

entire population, as well as the conditional average treatment effects (CATE) for each value

of the vector of covarites.

Following the formal definition of our problem in Definition 3, our primary goals in this

paper are to (1) quantify the magnitude of bias due to this overlap violation, (2) identify

the link between this bias and the algorithm used by the platform, and (3) discuss potential

solutions to overcome this problem.

3.2 Analysis

In this section, we theoretically analyze how the lack of overlap can lead to biased estimates

of the average treatment effect (ATE). We start by showing the identification problem with

the lack of overlap in observational data in §3.2.1. We then examine how the model-based

approaches like double machine learning performs in estimating the ATE in §3.2.2. Finally,
we focus on model-free approaches such as importance sampling and theoretically derive their

properties in §3.2.3.

3.2.1 Identification Challenge

It is well-known that the violation of the overlap assumption can bias the estimates of the

ATE. In this section, we illustrate this point by presenting a simple framework that we can

use for our subsequent analysis. To do so, we first introduce new notation that capture

the difference between different parts of the covariate space. In particular, we focus on the

conditional average treatment effect for three separate groups of observation units as shown

in Figure 1:

• Probabilistic assignment region (0 < π(Xi) < 1): For observations where 0 < π(Xi) < 1,

we define τr = E[Yi(1)− Yi(0) | 0 < π(Xi) < 1], which is the average treatment effect for

the observations that have a probabilistic assignment. We denote the fraction of such

observations in our data as αr.
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Assignment Regions

• Three assignment regions

Deterministic 
No-Assignment

Probabilistic 
Assignment

Deterministic 
Assignment

𝛼! 𝛼" 𝛼#

𝜏! 𝜏" 𝜏#

Proportions (no assumption on sizes)

CATE

𝜏∗ = 𝛼"𝜏" + 𝛼#𝜏# + 𝛼$𝜏$

Figure 1: Different regions based on the type of assignment.

• Deterministic assignment region (π(Xi) = 1): For observations where π(Xi) = 1, we define

τ1 = E[Yi(1)− Yi(0) | π(Xi) = 1], which is the average treatment effect for observations

where the assignment to the treatment certainly happens. We denote the fraction of such

observations in our data as α1.

• Deterministic no-assignment region (π(Xi) = 0): For observations where π(Xi) = 0,

we define τ0 = E[Yi(1) − Yi(0) | π(Xi) = 0], which is the average treatment effect for

observations that certainly do not receive the treatment. We denote the fraction of such

observations in our data as α0.

Now, we can define the average treatment effect as τ ∗ = αrτr+α1τ1+α0τ0, where αr+α1+α0 =

1. This decomposition allows us to highlight where the deterministic assignment creates a

problem. Suppose that the digital platform wants to use data D to estimate τ1. The problem

is that for this slice of the population, the treatment variable is perfectly correlated with the

propensity score, that is, Wi = π(Xi) = 1. The same problem is present in identifying τ0.

Thus, we can write the following lemma:

Lemma 1. The conditional average treatment effects τ1 and τ0 are unidentifiable given data

D.

Proof. There is no variation in the treatment variable to estimate τj = E[Yi(1) − Yi(0) |
π(Xi) = j] for j ∈ {0, 1}.

In light of Lemma 1, the only identifiable piece of τ ∗ is τr. We now want to see how this

identification problem manifests itself in both model-based and model-free approaches to

estimate causal estimands.

3.2.2 Model-based Approaches to Estimate ATE

There are many model-based approaches one could use to estimate ATE from observational

data. The traditional approach is to use a linear regression that projects the outcome on the
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treatment variable as well as other controls and estimate the average treatment effect. These

methods work well if the confoundedness in the treatment assignment is captured by a linear

combination of covariates. However, in many high-dimensional settings, the assignment has

more complex patterns, which makes linear controls inadequate in accounting for observed

confoundedness. Further, the relationship between other covariates and the outcome can

also follow a non-linear pattern. These limitations, in turn, attracted a growing body of

work that brings machine learning methods to casual inference in order to increase flexibility

and robustness of model-based methods to estimate ATE (Belloni et al., 2014; Hartford

et al., 2017; Chernozhukov et al., 2018a; Shi et al., 2019). Many of these methods are now

considered as the state-of-the-art methods for estimating the ATE. Our goal is to quantify

the magnitude of bias when we use these methods to estimate the causal estimands.

We present a general framework to study model-based approaches. Let µw(x) = E[Yi(w) |
Xi = x] denote the underlying population model for the conditional potential outcomes for

any w. We can write:

Yi(w) = µ0(Xi) + τ ∗(Xi)w + ϵi(w), (5)

where ϵi(w) denotes the structural error term for any value of the treatment w ∈ {0, 1}.
Unconfoundedness implies that E[ϵi(Wi) | Xi,Wi] = 0. We further define function m as the

conditional mean function such that m(x) = E[Y | X = x]. We can now write the following

decomposition:

Yi −m(Xi) = (Wi − π(Xi)) τ
∗(Xi) + ϵi(Wi), (6)

which holds because m(Xi) = µ0(Xi) + τ ∗(Xi)π(Xi). This decomposition – which is first

proposed by Robinson (1988) for estimating partially linear models – serves as a foundation

for model-based approaches to estimated ATE or CATE that use machine learning models

for causal inference. The key insight is that we can use machine learning models to flexibly

learn nuisance functions m(Xi) and π(Xi), and then feed these estimates into an objective

function to estimate causal estimands. We can define this objective function as follows:

τ ∗(·) = argmin
τ
E
[
(Yi −m(Xi)− (Wi − π(Xi)) τ(Xi))

2] . (7)

The double machine learning (DML) approach estimates both nuisance functions using

machine learning models and then estimate the ATE using a version of the objective function

above, where there is only one τ(Xi) for the population (Chernozhukov et al., 2018a). A series

of methods use this decomposition to estimate heterogeneous treatment effects or CATE by

using random forests (Athey et al., 2019), or more broadly any loss minimization method
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(Nie and Wager, 2021; Chernozhukov et al., 2018b). We now use this objective function to

prove the following proposition:

Proposition 1. Suppose that there is a digital platform that has access to data D =

{Yi,Wi, Xi, π(Xi)}, where π(Xi) is known, but takes values zero and one for parts of the

population. The estimated average treatment effect (ATE) τ̂ under any method that uses the

objective function in Equation (7) converges to τr in probability, that is:

τ̂
p→ τr (8)

Proof. Let Ir denote the set of observations that have probabilistic assignment. We denote

the total number of these observations by Nr. From Chernozhukov et al. (2018a), we know

that:

argmin
τ

1

Nr

∑
i∈Ir

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2 p→ τr. (9)

We now want to show that the RHS of Equation (9) is the same as what any methods

optimizing Equation (7) would estimate. We can write:

τ̂ = argmin
τ

1

N

N∑
i=1

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2

= argmin
τ

1

N

∑
i∈Ir

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2

+
∑
i/∈Ir

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2

= argmin
τ

1

N

∑
i∈Ir

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2 +

∑
i/∈Ir

(Yi −m(Xi))
2

= argmin
τ

1

N

∑
i∈Ir

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2

= argmin
τ

1

Nr

∑
i∈Ir

(Yi −m(Xi)− (Wi − π(Xi)) τ)
2 ,

(10)

where the second line is a simple decomposition based on the observations with probabilistic

and deterministic assignment, the fourth line is because Wi − π(Xi) = 0 for observations

with deterministic assignment, the fifth line drops the term
∑

i/∈Ir (Yi −m(Xi))
2 because it

is invariant of τ , and the sixth line changes 1/N to 1/Nr because it is invariant of τ . Now if

we combine the result of Equation (10) with that of Equation (9), the proof is complete.
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This proposition shows that methods such as double machine learning or causal forests

estimate τr as the ATE when the propensity is known. As such, to the extent that τr is

different from τ ∗, the estimate for the ATE would be biased. Given that τr appears in the

equation for τ ∗, the question is if there is any bound for the magnitude of bias. In light of

Proposition 1, we know that the magnitude of bias is |τ ∗− τ̂ | p→ |(αr−1)τr+α1τ1+α0τ0| such
that αr + α1 + α0 = 1, which allows us to further simplify this expression to the following:

|τ ∗ − τ̂ | p→ |α0(τ0 − τr) + α1(τ1 − τr)|. (11)

This simplification highlights the fact that if the treatment effect for the deterministic regions

is the same as the treatment effect for the probabilistic region, there will be no bias. However,

it is easy to imagine scenarios where the difference in τ1, τ0, and τr creates substantial bias

in estimates of the average treatment effect. We formalize this intuition in the following

corollary:

Corollary 1. The magnitude of bias can be any arbitrary amount if either α0 or α1 is

non-zero.

Proof. The proof is simple based on unidentifiability of τ1 and τ0, in conjunction with the

fact that α0 and α1 are not simultaneously equal to zero. As such, for any constant c, we can

find τ0 and τ1 such that |α0(τ0 − τr) + α1(τ1 − τr)| = c, which implies that we can have any

magnitude of bias.

While Corollary 1 shows that the bias can be of any magnitude if we have deterministic

assignment in our population, the bright side is that all the methods that use the objective

function in Equation (7) are able to recover the only identifiable part of τ ∗. That is, the

presence of deterministic assignment for parts of the population does not result in biased

estimates of the region with the probabilistic assignment. Hence, the researcher can rely on

the estimates as consistent estimators of the true population parameters for the region with

the probabilistic assignment. However, it is important to notice that this is only the case

when propensity scores are known, which allows the optimizer to ignore overlap-violating

elements of the objective function because Wi − π(Xi) = 0. The situation would be very

different if the propensity scores are to be estimated. This is because Wi − π(Xi) in the

objective function will no more be zero but a very small number, which may largely bias the

ATE estimate as the optimizer attempts to minimize the loss in Equation (7) by assigning

presumably large weights to τ ∗. The following corollary summarizes this point:

16



Corollary 2. If the propensity scores are not known, the estimated average treatment effect

(ATE) τ̂ under any method that uses the objective function in Equation 7 no more converges

to τr in probability.

The problem is exacerbated as the logarithmic loss function often used to estimate the

propensity scores never estimates zero or one as the predicted outcome. An immediate fix

for this problem on the platform’s end is to log the propensity scores data. However, this

practice is not quite trivial as it requires multiple teams to work together within the platform.

Further, in many cases, researchers use these data sets without accessing the true propensity

scores. A data-driven solution to this problem is to use sample trimming techniques based

on the estimated propensity scores, where the researcher drops the observations where the

estimated propensity score is very close to zero or one (Crump et al., 2009; Ma and Wang,

2020; D’Amour et al., 2021). If the covariates needed to estimate propensity scores are all

available, sample trimming can help recover τr. Yet, the estimated treatment effect can be

far from the true ATE.

3.2.3 Model-free Approaches to Estimate ATE

In §3.2.2, we show that model-based approaches to estimate ATE fail to recover the true ATE.

However, one could argue that the bias comes from outcome modeling. To address this issue,

we discuss model-free approaches to estimate the ATE that directly use the realized outcomes

without modeling them. The foundation for these approaches is the idea of importance

sampling proposed by Horvitz and Thompson (1952) in their seminal paper. The idea is

to weight each observation by their inverse propensity score, which gives us the following

estimator for the ATE:

τ̂IPS =
1

N

(
N∑
i=1

Yi

(
Wi

π(Xi)
− 1−Wi

1− π(Xi)

))
, (12)

where the first term Wi/π(Xi) weights the observations that received the treatment by the

inverse probability of that assignment, and the second term (1−Wi)/(1− π(Xi)) weights

the observations that did not receive the treatment. This estimator estimates the average

treatment effect by subtracting an estimate of what would happened if everyone had received

the control from an estimate of what would have happened if everyone had received the

treatment. It is a model-free approach because we do not need any model of the outcome to

estimate our causal estimand.

In the absence of full overlap, a drawback of this approach becomes immediately apparent.
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For observations with deterministic assignment, the denominator in one of the terms is zero,

which makes the overall estimator undefined. The conventional solution is to use sample

trimming wherein we drop observations with a deterministic assignment. As a result, this

approach only relies on the αr fraction of observations with the probabilistic assignment. We

can show the following proposition:

Proposition 2. Suppose that there is a digital platform that has access to data D =

{Yi,Wi, Xi, π(Xi)}, where π(Xi) is known, but takes values zero and one for parts of the

population. The ATE estimator based on Equation (12) that drops observations with a

deterministic assignment converges in probability to τr, that is:

τ̂IPS
p→ τr (13)

Proof. The proof is straightforward and directly follows from the fact that we can only use

non-deterministic propensity scores. As a result, we only focus on the observations in the

probabilistic region. Therefore, the proof directly follows Horvitz and Thompson (1952).

Similar to Proposition 1, Proposition 2 guarantees that the Inverse Propensity Scoring

(IPS) estimator recovers the treatment effect for the probabilistic region. As such, Corollary

1 holds for this proposition too, indicating that the bias is a function of two unidentifiable

elements τ1 and τ0. The equivalent of Corollary 2 here is that when propensity scores are not

known, trimming can become a non-trivial task because propensity scores very close to zero

or one can result in very large inverse weights, thereby heavily influencing the performance

of the estimator. This is why a body of work focuses on data-driven and robust rules for

finding the trimming threshold (Crump et al., 2009; Ma and Wang, 2020).

3.3 Simulation Experiments

In this section, we conduct simulation experiments with the general case of algorithmic

decision-making as presented in section 3. In these cases, the goal is to find the effect of

treatment Wi on Yi. However, the assignment to Wi is through an algorithm π that can be

partially deterministic. That is, given the vector of covariates Xi, the assignment probability

π(Xi) can be zero or one in some observations. We consider two interesting cases of this

general problem. First, in §3.3.1, we consider the case where the algorithm output is known

to the researcher. We show how different approaches perform in these scenarios. Next, in

§3.3.2, we focus on the case where the algorithmic output is not known, but can be estimated

using a high-dimensional set of covariates.
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3.3.1 Known Propensity Scores

We begin with the case where the platform has the following data: D = {Yi,Wi, Xi, π(Xi)}.
This means that the platform has direct access to the propensity scores needed to orthogo-

nalize the treatment and potential outcomes and satisfy the unconfoundedness assumption

(Rosenbaum and Rubin, 1983). To generate data in our simulation experiments, we use CATE

parameters {τ0, τ1, τr} and their corresponding proportions {α0, α1, αr} as follows:
• Step 1 : For each observation i, we take a draw to determine whether it belongs to

the probabilistic assignment region (0 < π(Xi) < 1) with probability αr, deterministic

no-assignment region (π(Xi) = 0) with probability α0, and deterministic assignment

region (π(Xi) = 1) with probability α1. If i belongs to the probabilistic region, we draw a

random probability value from the Uniform distribution, π(Xi) ∼ U(0, 1).
• Step 2 : We use π(Xi) values to simulate the treatment variable Wi.

• Step 3 : We generate structural error terms ϵi ∼ N (0, σ).

• Step 4 : We use appropriate CATE value from {τ0, τ1, τr} to calculate the outcome as

follows:

Yi = Wi

(
1
(
π(Xi) = 0

)
τ0 + 1

(
π(Xi) = 1

)
τ1 + 1

(
0 < π(Xi) < 1

)
τr

)
+ ϵi. (14)

We now simulate data under different sets of parameters and estimate the Average Treatment

Effect (ATE) using the following approaches:

1. Plain Mean Difference (MD): In this model, we simply estimate the the mean difference

between treated and control groups. Equivalently, we can regress Yi on Wi without

controlling for π(Xi). We denote this estimate with τ̂MD.

2. Double Machine Learning (DML): In this model, we follow the Double ML procedure

in Chernozhukov et al. (2018a), where we first use a model to fit Yi and Wi separately

using π(Xi) and Xi, and then regress the residuals of Yi on those of Wi.
4 The model

we use here is a Random Forest with maximum depth of 5 aggregated over 500 trees.

We denote the ATE estimate under this model by τ̂RF
DML.

3. Inverse Propensity Score (IPS): In this approach, we directly use the actual propensity

scores and estimate the ATE using Equation (12). It is worth noting that we drop

4In this example, we drop Xi because all the propensity scores are given (Rosenbaum and Rubin, 1983). The
results will not change if we include Xi in our analysis.
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N {τ0, τ1, τr} {α0, α1, αr}
True ATE Estimated ATE

(τ∗) (τ̂MD) (τ̂RF
DML) (τ̂IPS)

105 {1, 8, 2} {0.25, 0.25, 0.50} 3.25 5.0196 2.0122 1.9888

105 {1, 8, 2} {0.50, 0.50, 0.00} 4.50 7.9715 NA NA

105 {1, 6, 2} {0.40, 0.10, 0.50} 2.00 3.1221 1.9997 1.9725

105 {−1,−8, 2} {0.10, 0.10, 0.80} 0.70 0.0007 2.0039 2.0728

103 {1, 8, 2} {0.25, 0.25, 0.50} 3.25 5.2453 2.5337 3.0368

Table 1: Estimates of Average Treatment Effects (ATE) using different estimators when
propensity scores are known. Data are simulated using the corresponding parameters and
σ = 3.

observations with deterministic assignment because the denominator would be zero in

these cases. We denote this ATE estimate by τ̂IPS.

We present the results of our simulation experiments in Table 1. Each row in our table

presents one simulation experiment and the first two columns show the parameters needed

to simulate data. A few noteworthy patterns emerge from Table 1. First, as expected,

in all instances, ATE estimates from the plain regression are largely biased. Second, we

notice that both DML and IPS estimators are generally able to recover the true CATE for

the probabilistic region (τr), which is equal to 2 in all instances. This result confirms the

theoretical results presented in Propositions 1 and 2. The exception is the second row where

these estimators cannot identify any estimate because the proportion of the probabilistic

region is zero. This confirms the theoretical result in Lemma 1.

Third, we examine the magnitude of bias in estimating the ATE. As indicated in Corollary

1, this magnitude is |α0(τ0 − τr) + α1(τ1 − τr)|. We confirm this theoretical results using

the main parameters and estimates in Table 1. The only case in which there is no bias is

the third row, where |α0(τ0 − τr) + α1(τ1 − τr)| = 0, or alternatively, where τr = τ ∗. It is

important to notice that the reason is that our DML and IPS estimates are able to recover

τr, which happened to be the same in this instance as τ ∗. Therefore, while these estimators

can recover the true τr, their estimates of τ ∗ remain largely biased.

In the fourth row of Table 1, we consider a case where only a small fraction of observations

have deterministic assignment. The results in this row show that even a small fraction of

deterministic assignment in the data can largely bias the estimates of ATE, depending on

how the CATE in these deterministic regions is different from that in the probabilistic region.

Finally, in the fifth row of Table 1, we focus on a sample with fewer observations and simulate
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data with the same parameters as the first row. As expected, we find that DML and IPS

estimates are not as accurate and the noise in the data created some small sample biases.

3.3.2 Estimated Propensity Scores Using High-Dimensional Covariate Space

We now turn to the case where the propenstiy scores are not known, but can be estimated

using a high-dimensional covariate space. This case is common when researchers use digital

platforms’ internal data, where the algorithmic output is not stored but the full input of the

algorithm is observed, which allows researchers to estimate the assignment function. Formally,

it means that although π(Xi) is not directly available, the full set of covariates Xi is available

to the researcher. As such, we can estimate π̂(Xi) using data.

As discussed earlier in the paper in Corollary 2, we no more have guarantees in cases

with estimated propensity scores that our ATE estimates will recover the CATE for the

probabilistic region in our data (τr). In the case where propensity scores are known, we have

Wi = π̂(Xi), which allows both model-free and model-based approaches to ignore observations

with deterministic assignment. However, when propensity scores are estimated Wi − π̂(Xi) is

not exactly zero for deterministic assignment regions, so the estimator will no more ignore

these observations in the data. In this section, we want to see how different models perform

under simulated data for cases where propensity scores have to be estimated.

We first describe our simulation procedure, which is largely similar to our procedure in

the previous section. The only difference comes from the fact that we now involve Xi in

determining the propensity scores and outcomes. Therefore, we need to functions l and g for

determining the propensity scores and the nuisance part of the outcome respectively. Ideally,

we want these functions to be complex enough to reflect the practice in digital platforms that

use algorithmic decision-making. For this purpose, we train two XGBoost models on a subset

of normalized data from Rafieian (2022), with users’ leave and click decisions as the outcome

in these models to determine functions l and g for our simulation practice. Please notice that

the data set used is arbitrary and one could use any data to obtain complex functions. With

these functions, we proceed with our simulation as follows:

• Step 1: For each observation i, we first calculate the probability l(Xi) using the pre-trained

l function.

• Step 2: Given α0 and α1, we first sort the l(Xi) values and allocate the bottom α0 fraction

to deterministic no-assignment region (π(Xi) = 0) and the top α1 fraction to deterministic

assignment region (π(Xi) = 1). For the middle αr fraction values of l(Xi), we re-scale the

values with the existing minimum and maximum in these values. Let lmin and lmax denote

the minimum and maximum of the values of l(Xi) for the probabilistic region. We use
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the following propensity scores for the observations in this region:

π(Xi) =
l(Xi)− lmin

lmax − lmin

, (15)

where i is in the probabilistic region.

• Step 3: We use π(Xi) values to simulate the treatment variable Wi.

• Step 4: We generate structural error terms ϵi ∼ N (0, σ).

• Step 5: We first calculate g(Xi) as the nuisance part of the outcome and then use

appropriate CATE value from {τ0, τ1, τr} to calculate the outcome as follows:

Yi = g(Xi) +Wi

(
1
(
π(Xi) = 0

)
τ0 + 1

(
π(Xi) = 1

)
τ1 + 1

(
0 < π(Xi) < 1

)
τr

)
+ ϵi. (16)

We now simulate data using the same set of parameters as Table 1 and estimate the ATE

using the following models:

1. Plain Mean Difference (MD): Like previous section, we regress Yi on Wi without

controlling for any other factor. This is the simple mean difference between the groups

and we denote it by τ̂MD.

2. Regression with Controls: The second estimator we consider is an OLS model where

we regress Yi on Wi and Xi. Since Xi determines the propensity scores, we have

unconfoundedness conditional on Xi, so this mimics the practice where the researcher

controls for all the confounding factors in a regression model. We denote the ATE

estimate under this approach by τ̂OLS.

3. Double Machine Learning (DML): Like previous section, we use a DML model where we

first use a model to fit Yi and Wi separately using Xi, and then regress the residuals of

Yi on those of Wi. We use two different learners: (1) Random Forests, and (2) XGBoost.

The corresponding ATE estimate in each case is denoted by τ̂RF
DML and τ̂XGB

DML .

4. Inverse Propensity Score (IPS) Estimator: We first estimate the propensity scores using

an XGBoost model that predicts Wi using Xi. We then trim the sample based on the

propensity scores that are below 0.05 or above 0.95 and estimate the ATE using the

IPS estimator in Equation (12). We denote this estimate by τ̂XGB
IPS .

Overall, this gives us five different models to estimate the ATE. We present the results in

Table 2. There are a few important insights from this table. First, we find that models are
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N {τ0, τ1, τr} {α0, α1, αr}
True ATE Estimated ATE

(τ∗) (τ̂MD) (τ̂OLS) (τ̂RF
DML) (τ̂XGB

DML) (τ̂XGB
IPS )

105 {1, 8, 2} {0.25, 0.25, 0.50} 3.25 5.2831 4.1834 3.6415 1.5884 2.3930

105 {1, 8, 2} {0.50, 0.50, 0.00} 4.50 7.9965 7.9631 7.9202 5.2997 5.6950

105 {1, 6, 2} {0.40, 0.10, 0.50} 2.00 3.4704 3.0880 2.7649 1.3277 1.9784

105 {−1,−8, 2} {0.10, 0.10, 0.80} 0.70 −0.5836 0.4588 0.8912 1.0512 0.8167

103 {1, 8, 2} {0.25, 0.25, 0.50} 3.25 5.2882 4.1905 3.6464 1.5587 2.3268

Table 2: Estimates of Average Treatment Effects (ATE) using different estimators when
propensity scores have to be estimated with the full set of covariates. Data are simulated
using the corresponding parameters and σ = 3.

not able to recover neither the true ATE (τ ∗) nor the true CATE for the probabilistic region

(τr). Even when τ ∗ = τr, most models fail to correctly estimate these parameters. The only

exception is the IPS estimator, which can be due to the fact that propensity estimates are

very accurate in this case.

Next, we examine the magnitude of bias in the estimates by comparing the estimates to

the true ATE (τ ∗). As expected, the plain mean difference estimator is the most biased since

it does not control for any confounding in the data. The OLS estimator performs better than

the plain model but still exhibits larger bias compared to more flexible techniques. This is

because the OLS estimator only accounts for the linear relationships that the covariates have

with the treatment and outcome. Hence, models that can capture the complexities of these

relationships like DML and IPS perform better.

Despite smaller bias of DML and IPS, it is worth emphasizing that the estimates obtained

by these models are still largely biased. More importantly, unlike the case with known

propensities, these models fail to recover the CATE for the probabilistic region (i.e., τr)

even when we have all the covariates that determine the true propensity function. This is

an important result because in many cases the argument is that having access to all the

covariates that the platforms have would allow the researchers to estimate the treatment

effects from observational data. However, our results in Table 2 highlight that even the most

advanced models are not reliable when propensity scores have to be estimated, even if all the

required variables are available.

To illustrate this point further, we note that the instances in Table 2 are ideal in the

sense that the researcher has access to all the inputs that determine propensity scores. In

reality, we only have access to a subset of covariates used by the algorithm. We simulate this
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N {τ0, τ1, τr} {α0, α1, αr}
True ATE Estimated ATE

(τ∗) (τ̂MD) (τ̂OLS) (τ̂RF
DML) (τ̂XGB

DML) (τ̂XGB
IPS )

105 {1, 8, 2} {0.25, 0.25, 0.50} 3.25 5.2831 4.8005 4.5412 4.2153 4.2367

105 {1, 8, 2} {0.50, 0.50, 0.00} 4.50 7.9965 8.0364 7.9818 5.7698 7.5732

105 {1, 6, 2} {0.40, 0.10, 0.50} 2.00 3.4704 3.3208 3.1748 2.9796 2.8311

105 {−1,−8, 2} {0.10, 0.10, 0.80} 0.70 −0.5836 −0.1248 0.1167 0.1742 0.2705

103 {1, 8, 2} {0.25, 0.25, 0.50} 3.25 5.2882 4.7254 4.4349 4.0739 4.1607

Table 3: Estimates of Average Treatment Effects (ATE) using different estimators when
propensity scores have to be estimated with a subset of covariates used by the algorithm to
determine propensity scores. Data are simulated using the corresponding parameters and
σ = 3.

case by generating the data using the procedure mentioned above, but only use a subset of

covariates to estimate the propensity scores. In this case, we expect to have coarser estimates

of propensity scores. We present the results of this practice in Table 3. Like Table 2, we find

that the models recover neither τ ∗ nor τr. However, almost all the estimates are farther away

from their corresponding true parameters, compared to the estimates in Table 2.

3.4 Discussion

In light of our theoretical analysis, we know that the lack of overlap can substantially bias the

estimates of the average treatement effects. Now, an important question is whether this is

just a theoretical possibility that is not practically important. In other words, do we expect

the bias term |α0(τ0 − τr) + α1(τ1 − τr)| to be large in real settings? Part of the rationale for

the trimming approaches widely used in the literature is that τ0 and τ1 are not different from

τr. Here we ask the following question: is this homogeneity assumption (i.e., τ0 = τr = τ1)

correct in digital platforms?

To the extent that π(x) is a function of τ ∗(x), we expect τ0 and τ1 to be different from τr.

The problem is that in many cases, the objective function in the algorithm used by the digital

platform is directly influenced by CATE that is of interest to the researcher. For example,

suppose that there is a ride-hailing app that wants to offer promotions to users with the

objective to maximize the demand. As such, the platform offers promotion to users for whom

the effect of promotion on demand is higher, such that some users who have a significant and

positive CATE of promotion on demand certainly receive the treatment and some users who

have a significant and negative CATE of promotion on demand never receive the treatment.
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Now, if a researcher wants to use this data to study the effect of promotion on demand, we

expect that τ0 ≤ τr ≤ τ1, and therefore a large bias in any observational approach to estimate

the ATE. We now formalize this intuition in the following proposition:

Proposition 3. Let τ(Xi) denote the CATE for observation unit i. We have:

1. If τ(Xi) and belonging to the deterministic assignment region (i.e., 1(π(Xi) = 1) are

positively correlated, then we have τ1 ≥ τ ∗.

2. If τ(Xi) and belonging to the deterministic no-assignment region (i.e., 1(π(Xi) = 0)

are negatively correlated, then we have τ0 ≤ τ ∗.

Proof. For the proof, we only show the first one, since the second one follows the same logic.

We start by proving the following lemma:

Lemma 2. We have E[1(π(Xi) = 1)τ(Xi)] = P (π(Xi) = 1)E[τ(Xi) | π(Xi) = 1].

For brevity in our proof, we first define Qi = 1(π(Xi) = 1). We can now write:

E[1(π(Xi) = 1)τ(Xi)] = E[Qiτ(Xi)]

= E[E[Qiτ(Xi) | Qi]]

= E[QiE[τ(Xi) | Qi]]

= P (Qi = 1)(1)E[τ(Xi) | Qi = 1] + P (Qi = 0)(0)E[τ(Xi) | Qi = 0]

= P (Qi = 1)E[τ(Xi) | Qi = 1]

= P (π(Xi) = 1)E[τ(Xi) | π(Xi) = 1]

(17)

Now, we use this lemma to prove that if τ(Xi) and belonging to the deterministic assignment

region (i.e., 1(π(Xi) = 1) are positively correlated, then we have τ1 ≥ τ ∗. We can write:

τ1 = E[τ(Xi) | π(Xi) = 1]

=
P (π(Xi) = 1)E[τ(Xi) | π(Xi) = 1]

P (π(Xi) = 1)

=
E[1(π(Xi) = 1)τ(Xi)]

E[1(π(Xi) = 1)]

≥ E[1(π(Xi) = 1)]E[τ(Xi)]

E[1(π(Xi) = 1)]

= E[τ(Xi)]

= τ ∗,

(18)
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where the fourth line comes from the fact that the two variables are positively correlated.

Proposition 3 is important because it shows that even a small correlation can link to

a violation of τ0 ̸= τr ≠ τ1. Therefore, unless we have a strong reason to believe that

τ0 = τr = τ1, the assumption is that the equality does not hold. In particular, we expect the

algorithmic decision-making in digital platforms to at least implicitly use the information in

τ ∗(·).

4 Observational Solution to Overlap Violation

In the previous section, we presented the challenge digital platforms face due to the lack

of overlap in observational studies. The problem stems from the deterministic output of

algorithms that is used for decision-making in these platforms. Our theoretical analysis

shows the extent to which observational methods can produce largely biased and inconsistent

estimates of the average treatment effect when the overlap assumption is violated.

In this section, we seek to find an observational solution to this challenge. As such,

our goal is to use the existing data to recover the average treatment effects. Of course,

given the fact that the treatment effect estimands are unidentifiable under the current set of

assumptions, we can only overcome this issue by imposing further assumptions. In this section,

we explicitly state our assumptions and data requirements and discuss a novel solution based

on the machine learning methods. We first formally define our problem in §4.1, where we

present the identification problem caused by the lack of overlap as a missing data problem.

Next, in §4.2, we present our solution to the problem and the assumptions under which this

solution works. Finally, in §4.3, we present a series of simulated experiments to show how

our model performs under different scenarios.

4.1 Lack of Overlap as a Missing Data Problem

As discussed earlier, the fundamental problem with the deterministic assignment is one of

identification. In light of Lemma 1, we know that with the current set of assumptions, the

parameters τ1 and τ0 cannot be identified because there is no variation in the treatment

variable when accounting for the propensity score. In general, we can write the conditional

average treatment effect as follows:

τ ∗(x) = E[Yi(1)− Yi(0) | Xi = x] = µ1(Xi)− µ0(Xi), (19)

where µw(x) is the population function for potential outcomes conditional on x when assigned

to treatment w. Form a learning standpoint, if one of the two treatment states could have
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Figure 2: An illustration of the missing data problem due to the overlap violation.

never been generated in the data, no model can estimate the corresponding µ function. For

example, if a unit with covariates Xi could have never received the treatment, we have no

observation in our data to estimate µ1(Xi). As such, the problem caused by the lack of

overlap is one of missing data. That is, for a single treatment, the vector of CATE estimates

has missing values for observations in the deterministic regions. Figure 2 visualizes this

insight, where the CATE estimates are question marks for observations where the overlap

assumption is violated.

We now turn to the question of what variation would allow us to impute these question

marks. From our earlier results, we know that with only the data of a single treatment, it is

not possible to identify these questions marks. However, we argue that having the data on

a set of other treatments for the same set of observation units (e.g., users) can potentially

help. That is, instead of exploiting the within-study variation, we can exploit between-study

variation. Such a setting is quite common among digital platforms that deliver different

treatments at a large scale. Motivated by this insight, we define the problem of the digital

platform as follows:

Definition 4. Consider a digital platform that have data from multiple studies indexed by

j from 1 to J . Each study involves a binary treatment variable denoted by W (j), where the

value for the ith observation is either zero or one, i.e., W
(j)
i ∈ {0, 1}. For each study j,

the platform has the data D(j) = {Y (j)
i ,W

(j)
i , Xi, π

(j)(Xi)}, which collectively makes the data
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DT =
⋃J

j=1D(j). The platform’s goal is to recover the following matrix:

T =


τ (1)(X1) τ (2)(X1) . . . τ (J)(X1)

τ (1)(X2) τ (2)(X2) . . . τ (J)(X2)
...

...
. . .

...

τ (1)(XN) τ (2)(XN) . . . τ (J)(XN)

 , (20)

where τ (j)(Xi) is the CATE from the treatment in study j for observation unit i. Formally,

we can define this estimand as follows:

τ (j)(Xi) = E[Y
(j)
i (1)− Y

(j)
i (0) | Xi]. (21)

If the digital platform achieves the objective in Definition 4, it can recover average

treatment effect for the treatment in each study.

A few points are worth noting about the setting and data requirements presented in

Definition 4. First, treatments in different studies can be completely different. For example,

the treatment in study j and k can be whether a user receives a certain movie recommendation

and whether a user receives a free-trial offer. One could imagine this as different interventions

the platform made over time.5 Second, for each study, we need to have the same set of

observation units that form rows in the matrix in Equation 20. As such, one user can

be assigned to multiple treatments (e.g., both movie recommendation and free-trial in the

example above). Third, it is important to emphasize that this data requirement is not

excessive as companies often run numerous different treatments over a short period of time.

4.2 Solution Concept

We now present our solution to the problem presented in Definition 4. We first propose the

algorithm used for obtaining all the CATE values in Equation (20) in §4.2.1. We then discuss

the assumptions that we need for identification in §4.2.2. Finally, in §4.2.3, we propose a test

based on our proposed algorithm that allows researchers to examine the extent to which the

lack of overlap in their study biases their main estimates of interest.

4.2.1 Proposed Algorithm

Before we present our algorithm, we need to define some model preliminaries. As mentioned

earlier, the goal of our algorithm is to estimate CATE for all the elements in the matrix in spite

of the overlap violation. To do so, we first need to know which elements we cannot estimate

5If studies were concurrent, there is the possibility of interference. In our study, we assume no interference.
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with the conventional methods to estimate CATE. Therefore, we define the propensity matrix

as follows:

Π =


π(1)(X1) π(2)(X1) . . . π(J)(X1)

π(1)(X2) π(2)(X2) . . . π(J)(X2)
...

...
. . .

...

π(1)(XN) π(2)(XN) . . . π(J)(XN)

 , (22)

where each element Πi,j denotes the propensity score for the treatment in study j for unit

i, i.e., Πi,j = π(j)(Xi) = Pr(W
(j)
i = 1 | Xi). As such, the deterministic regions for each

treatment is defined as rows where the propensity score is either zero or one. We know that

the conditional average treatment effect is unidentified for these units. Thus, we define a

feasibility matrix F that takes value one only when the assignment is probabilistic, that is,

the propensity score is strictly between zero and one. As such, we can write each elements of

this matrix as follows:

F =


1(0 < π(1)(X1) < 1) 1(0 < π(2)(X1) < 1) . . . 1(0 < π(J)(X1) < 1)

1(0 < π(1)(X2) < 1) 1(0 < π(2)(X2) < 1) . . . 1(0 < π(J)(X2) < 1)
...

...
. . .

...

1(0 < π(1)(XN) < 1) 1(0 < π(2)(XN) < 1) . . . 1(0 < π(J)(XN) < 1)

 . (23)

The feasibility matrix F determines the scope of our CATE estimation. That is, if for

treatment j in unit i, we have Fi,j = 0, Lemma 1 implies that we cannot identify τ (j)(Xi).

However, if Fi,j = 1, we can use conventional CATE estimators to estimate τ (j)(Xi), because

π(j)(Xi) is probabilistic and the setting satisfies the unconfoundedness assumption. Therefore,

F determines what is identifiable and transform the problem in Definition 4 into a matrix

completion problem where we have an estimated CATE matrix T̂ incomplete, where each element

[i, j] is defined as follows:

T̂ incomplete
i,j =

τ̂ (j)(Xi) ifFi,j = 1

? ifFi,j = 0
(24)

As shown in Equation (24), F determines the question marks in our matrix completion

task. We now have an incomplete matrix T̂ incomplete, where the incomplete elements are the

overlap-violating regions. If the underlying matrix T is low-rank, we can then use conventional

matrix decomposition techniques to impute the question marks. This procedure exploits the

similarities in the joint space of units and treatments. We denote this new completed matrix
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by T̂ complete. Algorithm 1 presents the details of our proposed approach.

Algorithm 1 Matrix Completion for CATE Estimation

Input: DT ▷ From Definition 4
Output: T̂ complete

1: F ← 1(0 < Π < 1)
2: for j = 1→ J do
3: τ̂ (j) ← learnCATE(Y

(j)
i ,W

(j)
i , {Xi, π

(j)(Xi)}) ▷ Can be any CATE learner
4: for i = 1→ N do
5: T̂ incomplete

i,j ← τ̂ (j)(Xi)
6: if Fi,j = 0 then

7: T̂ incomplete
i,j ←?

8: end if
9: end for
10: end for
11: T̂ complete ← softImpute(T̂ incomplete)

The output of this algorithm is a complete matrix T̂ complete where all the elements have

been imputed. This complete matrix can then be used to estimate the ATE from the data.

For each treatment in study j, we can recover the average treatment effect as follows:

τ̂ (j) =
1

N

N∑
i=1

T̂ complete
i,j . (25)

If the matrix T is low-rank, τ̂ (j) is a bias-corrected version of the ATE for treatment j.

4.2.2 Assumptions and Identification

We now discuss the assumptions that we need for matrix completion approach to recover

the true average treatment effects. At a high level, our identification claim is that for each

observation unit in an overlap-violating region (Fi,j = 0), if we have enough cross-study

variation, we can exploit the similarities in the data to impute the conditional average

treatment effect for that observation unit. The following example helps illustrate the intuition.

Suppose that treatment j has deterministic assignment and no-assignment regions. For

example, this treatment has a zero propensity to be shown in unit i of our data, so CATE

of j is unidentifiable for this unit. Now, suppose that there is another treatment j′ that

has a probabilistic assignment for unit i, so we can estimate the CATE of j′ for unit i. If

the two treatments exhibit very similar patterns for the units where they can both feasibly

estimate the CATE, we can use the CATE of j′ for unit i to impute the CATE of j for unit i.
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Similarly, if there is another unit i′ that has a probabilistic assignment for treatment j and is

very similar to unit i for most treatments, we can use this similar unit’s CATE to impute the

missing entry for unit i.

The simple example above is just to illustrate what kind of variation we use in our method.

However, such exact similarities may be difficult to find in reality, especially if we have to

search on a case-by-case basis. Therefore, for this method to work, we need a more systematic

way to capture the similarities in the space of treatments. That is why we use a matrix

completion approach that has been widely used for collaborative filtering.

Now, we ask the question of when matrix completion is suitable for this practice. In

general, we need assumptions on two aspects of the matrix: the rank of the matrix and the

missingness patterns. We need the CATE matrix T to be low-rank. The low-rank requirement

intuitively means that the user response exhibits some common patterns across different

treatments in different studies. The result of such an environment is that we can exploit

similarities across users ans across treatments and decompose the matrix at a reasonably low

computational cost. For example, if the set of studies involve promotional treatments, we

expect the CATE in most of them to depend on the price elasticity of a user. Similarly, if a

digital platform runs notifications and each notification is a different treatment, we expect

such similarities, because users who are responsive to one notification are more likely to

respond to another notification. In particular, within the context of the same digital platform,

it is reasonable to assume that interventions share some common characteristics, and more

importantly, that the heterogeneity in the user response depends on a few broad user-level

characteristic. The following remark justifies why the low-rank assumption is reasonable in

these domains:

Remark 1. Let XN×D denote the covariate matrix where each row represents a user and

each column represents a covariate. The CATE from treatment j for unit i is τ (j)(Xi), which

is a function of the covariates. For each treatment j, there is a D-dimensional vector of

coefficients β(j) that determine the CATE value such that τ (j)(Xi) = β(j)XT
i . This linear

approximation is reasonable as D can be large. Now, we can write the CATE matrix T as

follows:

T = XBT , (26)

where B is a J ×D matrix where each column is the vector of coefficients for CATE for a

specific treatment. Now, if the underlying heterogeneity is mainly driven by a few factors, the

coefficients for most covariates become zero and only a few coefficients are important. A few

instances of these important factors are price elasticity or age that are shown to be explain
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most of the heterogeneity in treatment effects. If only a few factors explain the heterogeneity

in treatment effects, this means that the effective dimension of B is not D, but a number

considerably smaller. Therefore, the CATE matrix T is, by construction, a low-rank matrix.

The second set of requirements for matrix completion to work involves the missingness

pattern. Intuitively, the missingness pattern needs to be such that we can jointly exploit

the similarities between users and between treatments. As such, if the data are missing for

an entire column, there is no way to recover the parameters for that column. Likewise, if

the data are entirely missing for a row, the matrix completion approach cannot exploit the

similarities in any ways. Thus, although the missingness pattern can be non-random, a few

entries are needed for each row and each column.

4.2.3 Statistical Tests for the Existence of Bias

An important use of our matrix completion algorithm is to test whether the lack of overlap

can cause bias in the estimates of average treatment effect. From Corollary 1, recall that the

bias term from ignoring the overlap is |α0(τ0− τr) +α1(τ1− τr)|. Hence, if τr = τ0 = τ1, there

would be no bias in our estimates if propensity scores are known. In fact, the motivation

behind sample trimming in the prior literature is the fact that the τ0 and τ1 are no different

from τr. In this section, we present statistical tests based on our algorithm to examine

whether the lack of overlap can cause bias in estimating the ATE in two separate scenarios

based on when propensity scores are (1) known, and (2) unknown.

We begin with the case where propensity scores are known. In this case, we can run our

algorithm to obtain the completed matrix T̂ complete. We also have the propensity matrix Π,

which helps us distinguish between the three assignment possibilities for treatment j: (1)

probabilistic assignment (0 < π(j)(x) < 1), (2) deterministic assignment (π(j)(x) = 1), and

(3) deterministic no-assignment (π(j)(x) = 0). Hence, for each column j in matrix T̂ complete,

we have three corresponding groups of elements. This allows us to statistically test if τr = τ0

and τr = τ1, which is the underlying rationale behind conventional trimming techniques to

address the overlap issue. We can further test if the bias term is significantly different from

zero. The hypothesis test in that case would be α0(τ0 − τr) + α1(τ1 − τr) = 0. If we fail

to reject any of these tests, it means that the lack of overlap can fundamentally bias the

estimates of average treatment effects.

We now turn to a more complicated case where propensity scores are unknown and need

to be estimated from the data. In this case, we first need to estimate the propensity matrix.

Once we have Π̂, we can perform our matrix completion algorithm to obtain T̂ complete. As

discussed earlier, when we estimate propensity scores, it is challenging to identify the three
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assignment regions in the data. As such, we use different classification rules based on a

parameter η such that 0 < η < 0.5 to obtain a bias curve with the following algorithmic

procedure:

• Based on the value η, we create three regions such that (1) the probabilistic assignment is

the set of elements in column j of matrix where η < π̂(j)(x) < 1− η, (2) the deterministic

assignment region is the set of elements in column j of matrix where π̂(j)(x) ≥ 1− η, and

(3) the deterministic no-assignment region is the set of elements in column j of matrix

where π̂(j)(x) ≤ η.

• Using the three assignment regions, we compute the bias term α̂0(τ̂0 − τ̂r) + α̂1(τ̂1 − τ̂r).

• We use all the values of η and the corresponding bias term with confidence interval to

obtain the bias curve.

The resulting bias curve is a function of the parameter η and allows us to track test whether

the bias term is zero given any value of η. Not only does this approach allow us to statistically

test whether the bias term is zero at a given threshold η, it also allows us to see the overall

pattern in our propensity scores and how it interacts with the bias term. Presenting the bias

curve can enhance the transparency in an observational study.

4.3 Simulation Experiments

In this section, we deliver a series of simulation experiments using synthetic data to validate

our proposed algorithm. We consider a variety of cases that reflect real-world scenarios.

Each scenario corresponds to a certain missingness pattern (random or non-random) and the

extent of missingness. To show how our proposed algorithm performs, we need to make a

ground truth CATE matrix T with N rows that represent users and J columns that represent

studies. As discussed earlier in Remark 1, we can define the ground truth CATE matrix as

the product of the covariate matrix XN×D and the transpose of the coefficient matrix BJ×D

as follows:

T = XBT , (27)

where we can control the rank of the CATE matrix by choosing D.

Our goal in the simulation experiments is to generate data DT , as defined in Definition

4. This data set is the union of data sets corresponding to each study j. To generate DT ,

we need three inputs: (1) CATE matrix T that determines the treatment effect for each

observation, (2) propensity matrix Π as defined in (22), and (3) nuisance matrix G that

determines the relationship between covariates and the outcome. We can use these three

inputs and simulate Dsim
T using the following procedure:
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• Step 1: We use Π to simulate W
(j)
i for each unit i in each study j.

• Step 2: With the treatment variable realized, we can simulate the outcome as follows:

Y
(j)
i = Gi,j +W

(j)
i Ti,j + ϵi,j, (28)

where Gi,j is the nuisance part of the outcome, W
(j)
i Ti,j is the treatment effect given (if

any), and ϵi,j ∼ N (0, 1).

• Step 3: For each study j, we can construct data set D̃(j) = {Y (j)
i ,W

(j)
i , Xi, π

(j)(Xi)}. The
union of D̃(j) for all j’s will give us the Dsim

T .

For our simulations, we use N = 1000 and J = 100. We set the rank of the CATE matrix as

D = 10 and generate two random matrices XN×D and BJ×D, where each element of each

matrix comes from N (0, 2). We generate another coefficient matrix B̃J×D from N (0, 2) to

generate the nuisance matrix G as follows:

G = XB̃T . (29)

What varies across our simulation experiments is the missingness patterns that is operational-

ized by Π. We formalize this matrix in the following sections. Once we generate the data

Dsim
T in a specific condition, we can apply our proposed method in Algorithm 1. Because

we want to compare the performance of our proposed method with conventional methods

such as Double ML, we use R-learner as our CATE estimator that directly uses Robinson’s

decomposition.

4.3.1 Random Missingness Pattern

We start with the most well-known missingness pattern used in matrix completion problems:

missing-completely-at-random. In this scenario, each entry in the matrix has a uniform

probability of being missing. As such, each element in our feasibility matrix takes value one

with probability p, and zero with probability 1− p. Specifically, we can write the propensity

scores as follows:

Πi,j =


0 with prob (1− p)/2

1/2 with prob p

1 with prob (1− p)/2

(30)

A random missingness of the elements in a matrix resembles the key intuition behind trimming

approaches: if the overlap-violating regions are selected at random, then conventional models

can recover the average treatment effect (ATE) as discussed earlier in §3.4. However, we
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(d) p = 0.8

Figure 3: The performance of our proposed algorithm and conventional observational method
when missingness is at random with a uniform probability. Each figure represents a level of
missingness.

want to consider this case as a starting point to compare the performance of our algorithm

with that of the conventional approaches. We consider four different values for p: 0.2, 0.4,

0.6, and 0.8. We apply our Double ML and our proposed algorithm to the data to estimate

the Average Treatment Effect for each study j.

Figure 5 shows four figures, each corresponding to a certain p. The x-axis presents

studies as sorted by their true Average Treatment Effect (ATE). As shown in these figures,

conventional approaches like DML can all recover the true ATE, as expected. However, our

matrix completion algorithm is more accurate even in these cases due to the fact that it

uses data from other studies, especially in cases where a large portion of the elements of the
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CATE matrix is missing (p = 0.2).

4.3.2 CATE-Dependent Missingness: Case of Algorithmic Decision-Making

In real-world scenarios, we do not expect to have a random missingness pattern. As discussed

in §3.4, we expect the overlap-violating regions to be correlated with the CATE, in the

context of algorithmic decision-making. This case is more troublesome as the conventional

approaches can be arbitrarily biased. Our goal is to see how our proposed approach performs

under these scenarios. Before we present the scenarios, we define a score variable s
(j)
i as

follows:

s
(j)
i =

∑N
i=1 1(τ

(j)(Xi) > τ (j)(Xk))

N
, (31)

which determines the percentile of CATE for user i in study j in the distribution of CATEs in

study j. The score s
(j)
i shows the relative position of observation i in study j in contributing

to a higher ATE in that study. We use this score variable to design different scenarios where

higher or lower CATEs are systematically missing. To that end, we consider three separate

types of missingness as follows:

• Right-tail missingness of CATE: The first scenario is a one-sided missingness pattern such

that elements with higher CATE are more likely to be missing. In this case, we want

higher CATE values to have a higher probability of being missing. Using the definition of

score variable s
(j)
i in (31), we can define the propensity scores as follows:

Πi,j =

1/2 with prob 1− s
(j)
i

1 with prob s
(j)
i

(32)

Figure 4a shows the performance of different methods in recovering the true ATE. As

expected, we find that the conventional approaches (Double ML) largely underestimate

the true ATE because the overlap assumption is more likely to violated for observations

with higher CATE. However, we find that our proposed algorithm can recover the true

ATE accurately by exploitng the cross-study variation.

• Left-tail missingness of CATE: The second scenario is again a one-sided CATE-dependent

missingness, but this time the missingness happens at the lower end of the CATE

distribution. We use the same insight for constructing the missingness pattern based on
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the score variable as before. We can write:

Πi,j =

0 with prob 1− s
(j)
i

1/2 with prob s
(j)
i

(33)

In this case, the lower the score is, there is a higher chance that the propensity score is

equal to zero. Figure 4b compares the performance of our proposed algorithm with that of

the conventional approaches for this scenario. Like the previous scenario, the conventional

approaches fail to recover the true ATE. However, this time, these models overestimate

ATE because the lower end of the CATE distribution violates the overlap assumption,

and is therefore missing. Our proposed algorithm, on the other hand, recovers the true

ATE.

• Alternating one-sided missingness of CATE: The third CATE-dependent missingness is

a mix of the first two, where we have a one-sided missingness for each study, but the

direction alternates. That is, for some studies, we have right-tail missingness of CATE,

whereas for some other studies, we have left-tail missingness of CATE. Figure 4c shows

the results of this simulation. Our proposed method is able to recover the true ATE

in this scenario, whereas the Double ML approach exhibits a high magnitude of bias in

recovering ATE across studies.

• Two-sided missingness of CATE: The fourth CATE-dependent missingness that we

consider is a two-sided missingness, where the observations from both ends of the CATE

distribution are more likely to violate the overlap assumption. Like the previous scenarios,

this scenario also frequently arises in the context of algorithmic decision-making. We

operationalize this scenario by assigning a higher probability of missingness to observation

on both ends of the CATE distribution as follows:

Πi,j =


0 with prob (1− s

(j)
i )/2

1/2 with prob 1/2

1 with prob s
(j)
i /2

(34)

In this scenario, higher scores have a higher probability of being in a deterministic

assignment, whereas lower scores have a higher probability of being in a deterministic

no-assignment. Figure 4d shows the performance of Double ML in this case and compares

it with the performance of our proposed method. As shown in this figure, although Double

ML produce largely biased estimate in either direction, our proposed method is able to
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(c) Alternating one-sided missingness of CATE
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(d) Two-sided missingness of CATE

Figure 4: The performance of our proposed algorithm and conventional observational method
when missingness depends on CATE.

recover the true ATE in this scenario.

4.3.3 User-Dependent Missingness

We now discuss a different type of missingness that depends on users. That is, the data for

some users is more sparse than others. If this missingness is at random, neither conventional

approaches nor our proposed algorithm have any problem in recovering the ATE. However, if

the missingness probability is different for users who are more or less responsive to interventions

(higher or lower average CATE across studies), it is not clear how different methods will
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perform. To do so, we first define the overall sensitivity of the user to interventions as follows:

τ̃i =

∑J
j=1 τ

(j)(Xi)

J
. (35)

We use this notion of sensitivity to create two different user-dependent missingness patterns

through matrix F as follows:

• The first scenario we consider is a probabilistic user-dependent missingness. For each user,

we define a notion of relative sensitivity, which is the absolute value of their sensitivity

divided by the maximum absolute value of all user sensitivities. The higher the relative

sensitivity, the more likely the user is to have sparse data. We operationalize this insight

through matrix F as follows:

Πi,j =

1(τ̃i > 0) with prob
(

|τ̃i|
maxk |τ̃k|

)λ
1/2 with prob 1−

(
|τ̃i|

maxk |τ̃k|

)λ (36)

where λ can be set to manipulate the extent of the missingness and 1(τ̃i > 0) determines

whether the user will be assigned to the deterministic no-assignment or deterministic

assignment. We use λ = 1/10 that generates 80% overlap-violating entries in our data. We

present the results from this simulation experiment in Figure 5a. As shown in this figure,

Double ML method fails to recover the ATE with such missingness patterns. However,

our proposed algorithm can successfully recover the true ATE, despite the extent of the

missingness pattern. This is an important finding as the extent of sparsity is systematically

different across users.

• The second scenario we consider is a case where some observation units consistently

violate the overlap assumption in all studies. As such, the data are entirely missing for

some rows. As discussed earlier, this would not be an issue for the task of recovering ATE

if the missingness of user data is at random. However, if more sensitive users are more

likely to be missing in our data, this can create issues. We operationalize this type of

missingness as follows:

Πi,j =


0 if τ̃i ≥ c

1/2 if c ≥ τ̃i ≥ −c

1 if τ̃i ≤ −c

(37)

where c is a constant reference value. We set this reference value at the cutoff for top
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(a) Probabilistic missingness of sensitive users
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(b) Deterministic missingness of sensitive users

Figure 5: The performance of our proposed algorithm and conventional observational method
in scenarios with user-dependent missingness.

15% of the sensitivity values. This simulation is important because we normally expect

the matrix completion approach to fail in circumstances of complete missingness of some

rows. Figure 5b shows the results from this simulation experiment and verifies this

limitation. As shown in this Figure, both conventional approaches and our proposed

method fail to recover the true ATE. In fact, their performances are largely similar, which

comes from the fact that with entire missingness of the entries for the user, the matrix

completion approach does not have a better way for imputation than a simple observed

mean imputation for observed entries.

5 Conclusion

Digital platforms use algorithmic decision-making to deliver interventions to their users

at a very large scale. An important goal for both practitioners and academic researchers

is to identify the causal effect of such interventions. The gold standard answer to this

question is to run randomized experiments. However, these experiments are often too

costly, thereby giving rise to observational methods that use platforms’ existing data without

incurring experimentation cost. We examine this problem using the well-established potential

outcomes framework (Holland, 1986). Observational studies generally require an important

assumption called strong ignorability of the treatment assignment which comprises two parts:

unconfoundedness of the treatment assignment and overlap. While much of the prior applied

an methodological literature focused on the former, the latter received considerably less
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attention. We show that in digital platforms, this is in fact the overlap assumption that

is not satisfied because the output of algorithmic recommendations is often deterministic.

We theoretically show that the lack of overlap can be detrimental to the validity of an

observational study. We quantify the bias term and argue that in most digital platforms,

we expect the bias caused by the lack of overlap to be large. Lastly, we formulate the

identification problem caused by the lack of overlap as a missing data problem and propose

a matrix completion solution that is often considered for such challenges. We show that if

the platform has data on many treatments for the same units of population and the space of

treatment effects is low-rank, we can recover the true average treatment effect.

There are several contributions that our paper makes to the literature. First, we present

a comprehensive study of overlap violation in observational studies. We show how the lack of

overlap can bias the estimates of average treatment effects from observational studies that

ignore this assumption. Second, our paper provides important insights to practitioners. We

show that the data from digital platforms that use algorithms to make decisions suffer from

an often ignored part of the ignorability assumption: overlap assumption. We show that this

problem is generally prevalent in digital platforms. Finally, we provide a solution to this

problem that can correct the bias caused by the lack of overlap if the platform has access to

the data for numerous interventions and the underlying space is low-ranked.
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