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We develop a model to examine how discount rates affect the nature and composition

of innovation within an industry. Challenging conventional wisdom, we show that

higher discount rates do not discourage firm innovation when accounting for the

industry equilibrium. Higher discount rates deter fresh entry—effectively acting as

entry barriers—but encourage innovation through the intensive margin, which can

lead to a higher industry innovation rate on net. Simultaneously, high discount rates

foster explorative over exploitative innovation. Considering fluctuations in discount

rates, the model further rationalizes observed patterns in innovation cyclicality, and

shows that innovation by rivals inflates incumbents’ risk premia.
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1 Introduction

Since Schumpeter (1939), scholars have argued that innovation is key to understand the real

economy. In recent years, the study of the underlying determinants of corporate innovation

has become particularly relevant, as firms’ investment in research and development (hence-

forth, R&D) has increased dramatically.1 In spite of this growing interest, the literature

has so far neglected the role of discount rates in explaining firms’ R&D investment. This

is surprising: Existing studies show that discount rates are key to explain other corporate

decisions, such as physical investment, IPO and buyout activity, or employment (i.e., La-

mont, 2000; Pastor and Veronesi, 2005; Haddad, Loualiche, and Plosser, 2017; Hall, 2017).

Yet, discount rates should be arguably more significant in explaining R&D, as it is a long

term investment, has an extended gestation period, and bears an uncertain outcome.

In this paper, we seek to fill this gap and develop a model to study how discount rates

affect corporate innovation in industry equilibrium. Corporate finance textbooks suggest

that higher discount rates should penalize cash flows expected in the far future and, thus,

should discourage investments, especially longer-term ones such as R&D. Yet, this line

of reasoning neglects that a firm’s R&D investment largely depends on the presence and

behavior of competing firms, whose decisions are also affected by discount rates. Taking

into account that firms do not innovate in isolation, our model thus shows that a higher

market risk premium—that is, the common component of firms’ discount rates in the cross

section—can indeed lead to greater innovation rates by affecting the composition and the

nature of innovation within the industry—i.e., whether it is performed by incumbents or

entrants, and whether it is more exploitative or explorative. Considering fluctuations in the

market risk premium, the model also delivers novel insights on the cyclicality of innovation,

and on the effect of competition in technology on firms’ risk premia.

Our model considers an industry in which firms are subject to two sources of systematic

risk: a diffusion risk that directly affects firms’ cash flows, and a jump risk associated with

1Among others, see Doidge, Kahle, Karolyi, and Stulz (2018); Brown, Fazzari, and Petersen (2009); De
Ridder (2020).
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changes in the state of the economy. The market price of risk associated with the diffusion

risk is state-contingent. Consistent with the evidence in Braguinsky, Ohyama, Okazaki,

and Syverson (2020), firms in the industry may pursue two alternative types of innovation:

vertical (or explorative), which aims at major breakthroughs that improve the quality of

technology; and horizontal (or exploitative), which aims at creating new products within the

current technological frontier. As standard, we assume that innovation is costly and has an

uncertain outcome. The industry features three types of firms: an initiator, exploiters, and

entrants. The initiator represents the latest successful innovator to advance the technology

frontier via a vertical breakthrough, and to start a bundle of new products that build on

such breakthrough. Exploiters are firms that, exploiting the latest vertical breakthrough,

have successfully developed new products via horizontal breakthroughs, and solely focus

on production. Last, entrants are startups that invest in vertical and horizontal innovation

with the aim of becoming initiators or exploiters. Vertical breakthroughs cast the threat

of creative destruction on the initiator and exploiters, then causing their exit. Conversely,

horizontal breakthroughs cause partial displacement by making some of the initiator’s and

exploiters’ products obsolete, and thus reduce their revenues.

To disentangle the strengths at play in the model, we start by considering the case in

which there is just one state of the economy and the market price of risk is constant. When

abstracting from industry dynamics, we confirm the conventional wisdom that a higher

market price of risk discourages a firm’s R&D expenditures. However, when allowing for

endogenous industry dynamics, this result is overturned. A key result of the model is

that the market price of risk affects the composition of innovation within the industry.

Specifically, we show that a greater market price of risk discourages entry by new firms—

effectively acting as a barrier to entry—and, simultaneously, encourages innovation by

active firms. Compounding these offsetting effects, the market price of risk has a non-

monotonic effect on the industry-level rate at which new technologies endogenously emerge.

That is, perhaps surprisingly, we show that a higher market price of risk can spur the

endogenous advent of new technologies, if the ensuing higher R&D engagement of active

firms (the intensive margin) more than offsets the decline in the mass of entrants (the
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extensive margin). More broadly, we highlight that the market price of risk affects firms’

interactions in the technology space, then complementing existing models that focus instead

on how discount rates affect firms’ strategic behavior in the product market space (i.e., Dou,

Ji, and Wu, 2020; Chen, Dou, Guo, and Ji, 2020).2

Our model also reveals that accounting for different types of innovation—horizontal or

vertical—is key to understand how the market price of risk affects innovation incentives

in equilibrium. While vertical innovation is increasing in the market price of risk due to

the ensuing lower threat of creative destruction, horizontal innovation is non-monotonic

due to two offsetting strengths. First, the lower rate of creative destruction associated

with a higher market price of risk reduces the threat that the industry will soon experience

a vertical breakthrough (and thus operate on a different technology), which encourages

horizontal innovation by entrants. Second, a higher discount rate boosts innovation by the

initiator, which in turn increases the threat of a vertical breakthrough and, thus, deters

horizontal innovation. Overall, we show that the optimal rate of horizontal innovation

decreases with the market price of risk when it is sufficiently high, in which case the second

strength dominates. Hence, the model shows that a greater market price of risk stimulates

the more explorative type of innovation within the industry.

We next allow the market price of risk to vary over time. We assume that the economy

can be in two states, one characterized by a low market price of risk (the good state or

expansion) and the other characterized by a high market price of risk (the bad state or

recession), consistent with, e.g., Lustig and Verdelhan (2012). Our model shows that this

time variation importantly affects the cyclicality of R&D pursued by different firms in the

industry. We show that active firms are more R&D-intensive when the market price of

risk is higher (i.e., in bad states of the economy) but, at the same time, fewer firms are

active—namely, the mass of entrants investing in innovation is smaller. That is, active firms

face lower competition in innovation in bad states of the economy thanks to a lower rate

of creative destruction and of product obsolescence which, in turn, encourages their R&D

2Bloom, Schankerman, and Van Reenen (2013) show empirically that competition in technology and in
the product market are two distinct types of corporate rivalry.
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engagement. Moreover, whereas the aggregate (industry-level) contribution of entrants to

innovation is higher in good states of the economy (i.e., when the market price of risk is

lower) thanks to the greater mass of entrants, we show that the firm-level R&D investment

of active entrants is actually stronger in bad states, consistent with Howell, Lerner, Nanda,

and Townsend (2020) and Hacamo and Kleiner (2021). Hence, by identifying strengths

steering pro- and counter-cyclicality in innovation, our paper reconciles the Schumpeterian

view that firms should invest more in bad states of the economy, with the evidence that

R&D investment is procyclical at the aggregate level.3 Consistent with the evidence in

Babina, Bernstein, and Mezzanotti (2020), the procyclicality of innovation in our model is

largely driven by the extensive margin.

Having analyzed how the magnitude of the market price of risk impacts the industry

equilibrium, we also investigate how its fluctuations affect firms’ incentives to innovate.

To this end, we compare our two-state economy with an identical economy in which the

market price of risk is fixed at its two-state average. We find that fluctuations in the market

price of risk have the strongest impact on the extensive innovation margin. Specifically,

the mass of active entrants is larger, on average, when allowing for these fluctuations, in

which case the rate of creative destruction is greater. Consistent with the Schumpeterian

view that creative destruction spurs innovation, our model shows that fluctuations in the

market price of risk induce a more prominent industry turnover that, in turn, is beneficial

to the endogenous advent of new technologies. That is, our model shows that fluctuations

in the market price of risk are not detrimental to an industry’s technological advancement.

Last, the asset pricing implications of our model show that the resolution of the idiosyn-

cratic uncertainty associated with innovation outcomes affects firms’ risk premia, consistent

with Berk, Green, and Naik (2004) and Gu (2016). Unlike these earlier studies which study

innovative firms in isolation, our model contributes to understand how the nature of firms’

rivalry within an industry affects risk premia. While a number of papers conclude that

the threat of entry by new firms in the product market makes incumbent firms safer,4 we

3See, for instance, Griliches (1984), Comin and Gertler (2006), Barlevy (2007), or Fabrizio and Tsolmon
(2014), among others.

4See, for instance, Bustamante and Donangelo (2017) and Babenko, Tserlukevich, and Boguth (2020).
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predict that stronger competition in innovation makes incumbents riskier. Thus, our model

points out a mechanism to identify the nature of firm rivalry—either in product markets or

in technology—through the impact of firm entry on expected returns, thus complementing

the findings in Bloom, Schankerman, and Van Reenen (2013). Our model also shows that a

firm’s own innovation acts as insurance against the innovation of its rivals, consistent with

the patent race model by Bena and Garlappi (2020).

Related literature Our paper relates to the literature showing the significance of dis-

count rates for various corporate decisions and macroeconomic dynamics (see the presi-

dential address by Cochrane, 2011). In this strand, Pastor and Veronesi (2005) show that

waves of initial public offerings are largely driven by declines in expected market returns.

Haddad, Loualiche, and Plosser (2017) and Malenko and Malenko (2015) study the im-

pact of discount rates on buyout activity. Opp, Parlour, and Walden (2014), Dou, Ji, and

Wu (2020), and Chen et al. (2020) show that discount rate fluctuations affect competition

in the product market—differently, our paper looks at firm’s strategic interactions in the

technological space, consistent with the evidence that these are two very different types of

rivalries (see, e.g. Bloom, Schankerman, and Van Reenen, 2013). Taking a macroeconomic

perspective, Hall (2017) shows that the time variation in discount rates is a strong deter-

minant of unemployment dynamics. We contribute to this strand by showing that the level

and fluctuations of the market price of risk have a first-order impact on R&D investment,

challenging the conventional wisdom that larger discount rates discourage investment.

We also contribute to the corporate finance literature studying innovation. Previous

models on firms’ incentives to innovate have considered the role of managerial compensation

and incentives schemes (Manso, 2011), firms’ ownership structure (Ferreira, Manso, and

Silva, 2014), takeovers (Phillips and Zhdanov, 2013), financing frictions and cash availability

(Malamud and Zucchi, 2019; Lyandres and Palazzo, 2016), and debt financing (Geelen,

Hajda, and Morellec, 2021). We look instead at the impact of discount rates on innovation

Other studies documenting a negative relation between expected returns and product market competition
include Corhay, Kung, and Schmid (2020), Loualiche (2020), and Grotteria (2020).
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in an industry equilibrium. Thus, our paper also relates to the growing empirical literature

on competition in innovation—in this strand, Kogan, Papanikolaou, Seru, and Stoffman

(2017) measure how a firm’s innovation affects its rivals; Cunningham, Ederer, and Ma

(2021) study the role of takeovers in drug development; Manso, Balsmeier, and Fleming

(2019) study how explorative and exploitative innovations vary over the business cycle;

and Braguinsky et al. (2020) document how firms innovate vertically and horizontally. The

predictions of our model relate closely to Babina, Bernstein, and Mezzanotti (2020), Howell

et al. (2020), and Hacamo and Kleiner (2021), who study the cyclicality of the innovation

by incumbents and startups.

The theme of our paper also relates to earlier research showing how the study of cor-

porate decisions in industry equilibrium improves our understanding of their underlying

determinants. In this strand, Miao (2005) uncovers a price feedback effect by which the

availability of credit may discourage entry due to its downward effect on output prices,

Hackbarth and Miao (2012) elaborate on the link between mergers and industry dynam-

ics, and Pindyck (2009) characterizes how risk affects firms’ incentives to enter product

markets. Closely related to Pindyck (2009), we study how discount rates affect innovation

in the intensive and extensive margin. Moreover, Bustamante and Donangelo (2017) find

that industries with higher exposure to systematic risk are less attractive to new entrants

and remain more concentrated, given that the cash flows generated by incumbents are dis-

counted at higher rates. We show instead that discount rates act as a barrier to entry into

a firm’s technology space, and affect the composition of innovation within an industry.

Last, while a growing number of papers have documented that firms in less competitive

product markets with higher markups also have higher expected returns (i.e., Corhay, Kung,

and Schmid, 2020; Loualiche, 2020; Babenko, Tserlukevich, and Boguth, 2020), fewer papers

have focused on studying the impact of competition in technology (innovation) on risk

premia. As relevant exceptions, Bena and Garlappi (2020) consider a patent race model of

two firms in which the expected return of one firm decreases with its own innovation output

and increases with that of its rival, and Grotteria (2020) studies how lobbying relates to
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innovation and risk premia in a model of endogenous innovation.5

The paper is organized as follows. Section 2 presents the model. Section 3 analyzes

the model implications when the market price of risk is constant, whereas Section 4 allows

for time-variation in the market price of risk. Section 5 analyzes the model’s asset pricing

implications. Section 6 concludes. Technical developments are gathered in the Appendix.

2 The model

The economic environment Time is continuous, and the horizon is infinite. We con-

sider a cluster of firms, or industry, which compete in innovation. Firms are subject to

two sources of aggregate risk: a diffusion risk and a jump risk. These risks are both priced

and affect the dynamics of the stochastic discount factor, denoted by ξt, which satisfies the

following jump-diffusion process:

dξt
ξt

= −rdt− η(jt−)dB̃t +
∑
jt 6=jt−

(
eθ(jt−,jt) − 1

)
dÑ

(jt−,jt)
t . (1)

In this equation, r is the constant risk-free rate of the economy. dB̃t is a standard Brow-

nian motion representing the systematic source of diffusion risk, and η(jt) represents the

associated market price of risk. Ñ
(jt−,jt)
t is a compensated Poisson process with intensity

π̃jt− , whereas θ(jt−, jt) represents the associated risk adjustment.

The jump risk represents switches in the state of the economy. For simplicity, we assume

that the economy can be in two states, denoted by j = G,B: a good (expansion) state

j = G and a bad (recession) state j = B. We assume that the market price of the diffusion

risk is state-contingent so that η(jt) ≡ ηj, and we impose ηG < ηB—i.e., the market price

of risk is countercyclical, as documented by Lustig and Verdelhan (2012) among others.6 A

5More broadly, our paper relates to Garleanu, Kogan, and Panageas (2012), Garleanu, Panageas, and
Yu (2012), Kogan, Papanikolaou, and Stoffman (2020), Kung and Schmid (2015), and Bena, Garlappi, and
Gruning (2016), studying how the interaction between innovation and consumption affect asset prices in
general equilibrium.

6As shown by Campbell and Cochrane (1999), the countercyclicality of the market price of risk can be
driven by, e.g., time-varying risk aversion.
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switch in the state of the economy causes a jump in the stochastic discount factor, meaning

that investors require a compensation for the risk of the economy switching states. This

compensation translates into a wedge between the transition intensity under the physi-

cal probability measure and under the risk neutral measure. Using the risk adjustment

θ(jt−, jt) ≡ θj, the risk-neutral transition intensities satisfy πj = eθj π̃j in each state. As

in Bolton, Chen, and Wang (2013), we assume that θG = −θB > 0, which implies that

the transition intensity from state G (respectively, B) to state B (G) is higher (smaller)

under the risk-neutral probability measure than under the physical one. In other words,

risk averse agents expect the good (bad) state to be shorter (longer).

Innovation types We follow Howitt (1999) and acknowledge that firms within the in-

dustry may pursue two types of innovations: Vertical (or explorative) or horizontal (or

exploitative). Consistent with Arora, Belenzon, and Sheer (2021), vertical innovations are

more related to “research,” whereas horizontal innovations are more related to “develop-

ment.” Specifically, vertical innovations represent major breakthroughs in the quality of

technology, denoted by qt. Conversely, horizontal innovations build on the existing techno-

logical quality (i.e., on the latest vertical breakthrough) and aim at creating new products

(or varieties). Hence, horizontal innovations can be seen as follow-up applications of the

current technology aimed at creating new product lines. In the spirit of Howitt (1999),

follow-up horizontal innovations applied to a given quality level qt eventually run into di-

minishing returns to scale. That is, horizontal innovations become gradually less productive

until a new vertical breakthrough initiates a new technological cluster that makes horizon-

tal innovation productive again. We define a technological cluster as the collection of new

products that stem from a given increase in the quality of technology.

We assume that the industry features three different types of firms: an initiator, ex-

ploiters, and entrants. The initiator, denoted by the value function Uj in each state j of

the economy, represents the latest vertical innovator upgrading quality qt, then starting a

new technological cluster and creating a mass of new products. The initiator continues to

invest in innovation while producing and selling these products. The exploiters, denoted
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by the value function Xj in each state j, are firms that have successfully developed new

product lines through horizontal innovation within a given technological cluster, and solely

focus on production (i.e., they do not further invest in R&D). Entrants, denoted by the

value function Wj, are startups on the sideline and represent the industry’s wellspring.

Entrants invest in vertical and horizontal innovation and have the potential to become the

new initiator (and start a new technological cluster) or an exploiter (then introducing new

products). We next describe these firm types in detail.

Initiator (innovating producer) The latest vertical innovator improving the industry’s

quality level qt becomes the initiator of a new technological cluster and drives the existing

producers (that is, the previous initiator and exploiters) out of the market. Using this novel

technology, the initiator manufactures a mass Mt of products. In each product line i, the

firm faces the following demand function:

pit = Γj

(
Yit
qt

)−β
, (2)

where pit represents the selling price associated to product i, Yit represents the associated

quantity, and β ∈ (0, 1) is the inverse of the price elasticity of demand.7 Γj represents a

demand-shift parameter, which varies with the state of the economy j. We assume that

the cost of production is normalized to one in all product lines, without loss of generality—

thus, pit − 1 represents the markup in product line i. Following previous literature, we

assume that all product lines exhibit the same demand function, and each product line is

a monopoly until an entrant attains a breakthrough, as we explain below.8

The initiator of the technological cluster earns revenues from producing the Mt goods

and, at the same time, continues to invest in innovation. We denote by zt the initiator’s

7As we express p and Y as a function of time (as captured by the subscript t), we omit their dependence
to the state of the economy (subscript j).

8The assumption that each product line represents a monopoly is standard in this literature, see e.g.,
Klette and Kortum (2004), Aghion and Howitt (1992), Howitt (1999), Acemoglu, Akcigit, Alp, Bloom, and
Kerr (2018), Akcigit and Kerr (2018), among many others. Because all the product lines face the same
demand function, we drop the subscript i in the following.
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innovation intensity at time t. We follow previous literature in capturing the key features

of investment in innovation: It is costly and has an uncertain outcome. That is, if the firm

bears the following flow cost

Φ(z, q,M) = ζ
z2
t

2
qtMt, ζ > 0, (3)

it attains a breakthrough at Poisson rate φzt, where φ is a positive constant. This specifi-

cation implies that the occurrence rate of such events is more likely if the firm spends more

on innovation. It also captures the idea that innovation becomes more costly if quality

is greater or if the mass of current product lines is larger.9 We assume that when the

initiator attains a breakthrough, quality jumps by a factor λ > 1 and the mass of product

lines jumps by a factor ϕ > 1. That is, because the initiator has specific “working” knowl-

edge of the particular industry, an innovation increasing the quality of technology results

in the creation of new products, in the spirit of Nelson (1959) and Akcigit, Hanley, and

Serrano-Velarde (2021).

Absent breakthroughs by other firms, the cash flows of the initiator satisfy the following

dynamics:

dCt = [Yt (pt − 1)Mt − Φ(z, q,M)] dt+ σYtMtdB̃
U
t (4)

= [Yt (pt − 1)Mt − Φ(z, q,M)] dt+ σYtMt

[
ρdB̃t +

√
1− ρ2dB̃U⊥

t

]
.

The first term represents the initiator’s profits from production in the Mt product lines

net of R&D expenditures. Throughout our analysis, we focus on cases in which this term

is positive, so to avoid the degenerate case in which the initiator always makes losses in

expectation. The second term represents the volatility of the initiator’s cash flows, which

increases with the firm’s production rate. The parameter σ is a positive constant, and

B̃U is a standard Brownian motion under the physical probability measure. The Brownian

9Scalability of the innovation costs in quality or product lines is consistent with previous models of
endogenous growth, see Aghion, Akcigit, and Howitt (2014) for a survey as well as Akcigit, Hanley, and
Serrano-Velarde (2021) or Acemoglu et al. (2018) for recent contributions.
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motion B̃U is correlated with the aggregate shock B̃ by a factor ρ ≥ 0. That is, B̃U can be

decomposed into the orthogonal components B̃t and B̃U⊥
t through ρ, where B̃U⊥

t captures

idiosyncratic risk independent of the aggregate (priced) risk B̃t.

Consistent with the evidence in Argente, Lee, and Moreira (2020), we assume that

the initiator loses some of its product lines if an entrant successfully attains a horizontal

innovation. In this case, new product lines are launched, which make some of the initiator’s

existing products obsolete. Namely, if an entrant attains a horizontal innovation creating a

mass ωMt− of new products, the initiator’s product lines drop from Mt− to Mt = Mt−(1−

ωδ), and so do cash flows.10 The parameter δ ∈ (0, 1] represents the degree of overlap

between these new products and those of the initiator. A greater overlap means that more

of the initiator’s products become obsolete due to a horizontal breakthrough. We denote

by Ψht the endogenous rate of horizontal displacement in the industry—equivalently, the

rate at which entrants as a whole attain horizontal breakthroughs.

In addition to obsolescence due to horizontal innovation, the initiator loses all of its

product lines if an entrant takes over its technological leadership via vertical innovation

and starts a new technological cluster. In this case, the initiator is hit by creative de-

struction. We denote the endogenous rate of creative destruction—i.e., the rate at which

entrants attain a vertical breakthrough—by Ψvt. When creative destruction hits, the ini-

tiator liquidates its assets and exits. We assume that liquidation is costly, as the initiator

recovers just a fraction α ∈ [0, 1) of its value.

Entrants There is a continuum of entrant firms on the sideline, whose endogenous mass

is denoted by µ. Entrants only invest in innovation and can be interpreted as startups.

Because entrants do not have ongoing production—i.e., differently from the initiator, they

do not have working knowledge of specific product lines—they do not benefit from the

synergy between vertical and horizontal R&D as the initiator does. Thus, entrants need to

spend on vertical or horizontal innovation separately.

We denote an entrant’s innovation rate targeting vertical breakthroughs by vt at any

10As shown by Equation (4), the cash flows of the initiator scale up with its mass of product lines Mt.
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time t. Similar to the initiator, vt governs the Poisson rate of vertical breakthroughs—given

by φvvt with φv being a positive constant—and entails the flow cost:

Φv(v, q,M) = ζv
v2
t

2
qtMt, ζv > 0. (5)

When the entrant attains a vertical breakthrough, the industry’s technological quality

jumps by a factor Λ > 1, a new technological cluster is created, and the entrant takes over

the initiator’s industry leadership. In turn, we denote by ht an entrant’s innovation rate

targeting horizontal breakthroughs. When spending the amount

Φh(h, q,M) = ζh
h2
t

2
qtMt, ζh > 0, (6)

an entrant attains a horizontal innovation at a Poisson rate φhh, where φh is a positive

parameter. That is, the greater the rate ht, the more likely the entrants will attain a

horizontal breakthrough creating a mass of new products MXt = ωMt−, where ω ∈ [0, 1]

is a constant and Mt− represents the mass of the initiator’s product lines right before

the breakthrough. As Mt decreases as successive horizontal innovations are introduced

within a given technological cluster, we acknowledge that horizontal innovations run into

diminishing returns to scale (see, e.g., Howitt, 1999). Once an entrant attains a horizontal

breakthrough, it becomes an exploiter thereafter.11

Entrants do not have ongoing production, and their risky investment in innovation

exposes them to random shocks—for instance, random outflows or windfalls in the devel-

opment of new ideas or products. Specifically, we assume that entrants’ cash flows are

described by the process:

dCW
t =

[
−1

2

(
ζvv

2
t + ζhh

2
t

)
dt+ σWdB̃

W
t

]
Mtqt (7)

where σW is a positive constant. B̃W
t is a standard Brownian motion under the physical

11Notably, because entrants aim to improve on the initiator’s technology and products, their innovation
cost is a function of current quality qt and of the initiator’s mass of product lines Mt.
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probability measure, which is correlated with the aggregate shock B̃t by a factor ρW ≥ 0.12

This specification implies that entrants have negative cash flows in expectation, consistent

with the evidence that startups usually lack steady revenues while developing an innovative

idea. As entrants aim at improving the quality and expand the bundle of products launched

by the initiator, their innovation costs and volatility depend on qt and Mt.

At the outset, entrants face an entry cost Kt = κqtMt to start investing in innovation,

which can then be interpreted as the cost of installing the firm’s technological capital. The

magnitude of the cost Kt varies over time due to technological improvements in qt or due

to the expansion or contraction of Mt. As a result, if the initiator or other entrants attain

a breakthrough, an entrant needs to adjust its technological capital in proportion to the

ensuing change in qt and/or Mt, consistent with Luttmer (2007).

Exploiters (non-innovating producers) Entrants who successfully attain a horizontal

breakthrough—i.e., who create a mass of new products MXt—become the monopolistic

producers in such new product lines. These firms, which we refer to as exploiters, give up

on innovation and simply maximize their value by choosing the production quantity YXt

and the selling price pXt in their product lines. As the initiator, the exploiters face the

demand function (2) in each product line. An exploiter’s cash flows are given by:

dCX
t =YXt (pXt − 1)MXtdt+ σXYXtMXtdB̃

X
t . (8)

In this equation, σX is a positive constant, and B̃X
t is a standard Brownian motion under

the physical probability measure that is correlated with the aggregate Brownian shock B̃t

by a factor ρX ≥ 0.13 Because the initiator and the exploiters both produce goods in the

same industry, we assume that their exposure to aggregate risk is the same, i.e., ρX = ρ.

As for the initiator, an exploiter’s cash flow volatility increases with its production rate.

12As for the initiator, we can decompose the Brownian motion B̃Wt into the systematic source of risk
and an orthogonal component, representing purely idiosyncratic risk.

13As for the other firms, the Brownian motion B̃Xt can be decomposed into the orthogonal components

B̃t and B̃X⊥t through ρX , where B̃X⊥t is independent to the aggregate (priced) risk B̃t.
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Similar to the initiator, the exploiters can lose product lines due to the obsolescence

triggered by subsequent horizontal breakthroughs by entrants. When this happens, the

exploiters lose a fraction ωδ of their active product lines. In addition, exploiters face the

threat of creative destruction. That is, exploiters are driven out of the market if a vertical

breakthrough improves the current quality qt and starts a new technological cluster. When

creative destruction hits, the exploiters liquidate and recover just a fraction αX ∈ [0, 1) of

their value, similar to the initiator. Notably, the exploiters are subject to the threat of exit

when either the initiator or the entrants attain a vertical breakthrough.

Industry equilibrium We consider an industry equilibrium in which: (1) the initiator

maximizes its value by choosing its optimal production and innovation rate; (2) exploiters

maximize their value by choosing their optimal production rate; (3) entrants maximize

their value by choosing their optimal vertical and horizontal innovation rates; (4) the mass

of active entrants makes the free-entry condition binding at any time.

As we show in the following, the equilibrium rate of creative destruction Ψvt is derived

endogenously as the aggregate rate at which active entrants attain a vertical breakthrough

starting a new technological cluster. In turn, the equilibrium rate of horizontal displacement

Ψht is the aggregate rate at which active entrants attain a horizontal breakthrough, then

creating new products and causing obsolescence of existing products. Notably, Ψvt and Ψht

affect the initiator’s and the exploiters’ value by casting the threat of exit or of product

obsolescence and, in turn, are affected by the initiator’s and the exploiters’ value through

their impact on the entrants’ optimal innovation rate.

3 Constant market price of risk

To disentangle the forces at play, we start by considering the case in which there is only

one state of the economy, in which the market price of risk is constant and denoted by η.14

14As there is just one state, the demand shift parameter Γj = Γ is constant too.
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3.1 Model solution

Using Girsanov theorem, the initiator’s cash flow process satisfies the following dynamics

under the risk neutral measure:

dCt = Yt (pt − 1− σρη)Mtdt− Φ(zt, qt,Mt)dt+ σYtMtdB
U
t , (9)

where BU
t is the Brownian motion describing the initiator’s shocks under the risk-neutral

measure. Because the optimal production quantity affects the volatility of revenues in each

product line, the risk-adjustment is proportional to Yt and Mt. Using standard arguments,

the value of the initiator satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

rU(q,M) = max
z,Y

MY (p− 1− σηρ)− ζ z
2

2
qM + φz [U(λq, ϕM)− U(q,M)]

+ Ψv [αU(q,M)− U(q,M)] + Ψh [U(q,M(1− ωδ))− U(q,M)] . (10)

The term on the left-hand side of this equation is the return required by risk-neutral

investors. The right-hand side is the expected change in firm value on an infinitesimal time

interval. Namely, the first two terms are the risk-adjusted expected cash flows net of R&D

expenditures. The third term is the expected change in firm value due to a technological

breakthrough by the initiator, which triggers an increase in quality by λ and an expansion in

the mass of product lines by ϕ. The fourth term represents the effect of creative destruction

triggered by entrants’ vertical innovations (occurring at rate Ψv), in which case the initiator

exits and recovers just a fraction α of firm value. The last term is the effect of obsolescence

triggered by entrants’ horizontal innovations (occurring at rate Ψh), which erodes a fraction

ωδ of the initiator’s product lines.

We conjecture that the value of the initiator scales with quality qt and with the mass

of product lines Mt, U(qt,Mt) = qtMtu, where u represents the initiator’s scaled value.

Also, we define by y ≡ Yt/qt the production quantity in each product line scaled by quality.
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Substituting these definitions into equation (10) gives:

ru = max
z,y

y1−βΓ− y − σηρy − z2

2
ζ + φz (λϕ− 1)u−Ψvu(1− α)−Ψhuωδ. (11)

The optimization problem of the initiator is over the production quantity y and over the

innovation decision z. Differentiating the above equation with respect to y gives the optimal

production quantity per product line and the associated selling price:

y(η) =

(
Γ(1− β)

1 + σηρ

) 1
β

⇒ p(η) = Γy−β =
1 + σηρ

1− β
. (12)

As illustrated by equation (4), the firm endogenously chooses its exposure to aggregate risk

by setting its optimal production quantity. Equation (12) shows that if the market price of

risk η is greater, the firm reduces its optimal production quantity and increases the selling

price. That is, the firm effectively reduces its exposure to aggregate risk and, by increasing

the selling price, it passes the higher price of risk on to the consumers.

Differentiating equation (11) with respect to z gives the optimal innovation rate:

z(η) =
φ

ζ
(λϕ− 1)u(η). (13)

This expression suggests that the higher the value of the initiator, the greater its innovation

rate, as the surplus from attaining a technological breakthrough widens. Moreover, the

optimal innovation rate increases if R&D expenditures are more likely to translate into

technological breakthroughs (higher φ), if the returns to innovation are greater (larger λ

or ϕ), or if innovation is less costly (ζ is smaller). By substituting equations (12) and (13)

into equation (11) gives

φ2

2ζ
(λϕ− 1)2 u2 − (r + Ψv(1− α) + Ψhωδ)u+ Υ(η) = 0. (14)

where Υ(η) ≡ β
(

1−β
1+σηρ

) 1
β
−1

Γ
1
β represents the initiator’s risk-adjusted profits from produc-
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tion, which decrease with the market price of risk.

Consider now the dynamics of the exploiters.15 Recall that exploiters are entrants that

have attained a horizontal breakthrough creating a mass of new product lines MXt = ωMt−.

We define yX ≡ YXt/qt as an exploiter’s production quantity per active product line scaled

by quality. Exploiter value then satisfies:

rX(q,MX) = max
YX

MXYX (pX − 1− ηρσX) + (Ψv + φz) (αXX(q,MX)−X(q,MX))

+ Ψh [X(q, (1− ωδ)MX)−X(q,MX)] .

As for equation (10), the right-hand side is the expected change in exploiter value over an

infinitesimal time interval. The first-term represents the exploiter’s risk-adjusted expected

profits. The second term represents the effect of vertical innovations by entrants (occurring

at rate Ψv) or by the initiator (occurring at rate φz), which trigger the advent of a new

technological cluster and cause the exit of the incumbent exploiters. The third term rep-

resents the effect of horizontal innovations by entrants (occurring at rate Ψh), which cause

the exploiters to lose a fraction of their product lines. Exploiters maximize their value by

choosing their optimal production quantity YX .

We conjecture that the exploiter value function satisfies X(qt,MXt) = qtMXtx̃, where

x̃ represents the exploiter value scaled by the industry’s quality level qt and by the mass

of its active product lines MXt. When an exploiter starts production, its mass of product

lines can be expressed as a function of the product lines of the initiator: MXt = Mt

1−ωδω.
16

Thus, we can express the exploiter value as a function of the active product lines of the

initiator Mt as follows:

X(qt,MXt) = qtMXtx̃ = qtMtx̃
ω

1− ωδ
= qtMtx. (15)

15The dynamics of exploiters’ and entrants’ cash flows under the risk neutral measure are reported in
Appendix A.1.

16Recall that right after a horizontal breakthrough leading to the emergence of a new exploiter, the
initiator’s product lines are Mt = Mt−(1− ωδ).
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To make the scaled value of the exploiter comparable to the other scaled quantities, we

define x = x̃ ω
1−ωδ , which satisfies:

rx = max
yX≥0

ω

1− ωδ
yX

(
Γy−βX − 1− ηρσX

)
− (φz + Ψv) (1− αX)x−Ψhωδx. (16)

Maximizing this equation with respect to yX gives

yX(η) =

(
Γ(1− β)

1 + ηρσX

) 1
β

(17)

and the associated selling price is pX = 1+σXηρ
1−β . Notably, the initiator and the exploiters

choose a different production quantity due to the difference in their cash flow volatilities (see

equation (12)), which in turn results in a different exposure to systematic risk. Substituting

equation (17) into equation (16) gives the valuation equation for the exploiter:

rx =
βω

1− ωδ

(
1− β

1 + σXρη

) 1
β
−1

Γ
1
β − (φz + Ψv)x (1− αX)−Ψhωδx. (18)

Next, we study the dynamics of entrants, whose value W (q,M) is a function of the

current quality level and the product lines it tries to improve on. Entrant value satisfies

the following HJB equation:

rW (q,M) = max
v,h

−qM
(
ηρWσW +

ζv
2
v2 +

ζh
2
h2

)
+ φvv [U(Λq,M)−W (q,M)]

+ φhh [X(q, ωM)−W (q,M)] + φz [W (λq, ϕM)−W (q,M)−K(λϕ− 1)] (19)

+ Ψ−v [W (Λq,M)−W (q,M)−K(Λ− 1)] + Ψ−h [W (q,M(1− ωδ))−W (q,M) +Kωδ] .

The first term on the right-hand side represents an entrant’s risk-adjusted expected outflow

on any time interval. The second term represents the effect of a vertical breakthrough by

the entrant occurring at rate φvv, in which case it starts a new technological cluster and

becomes the new incumbent initiator. The third term represents the effect of a horizontal

breakthrough by the entrant occurring at rate φhh, in which case the entrant becomes an
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exploiter. The fourth, fifth, and sixth terms represent the effect of breakthroughs by the

current initiator (occurring at rate φz), vertical breakthroughs by other active entrants

(occurring at rate Ψ−v ), or horizontal breakthroughs by other active entrants (occurring

at rate Ψ−h ), respectively. The fourth and fifth terms mean that, whenever the initiator

or other entrants attain vertical breakthroughs, the entrant needs to catch up with the

new technology, consistent with Luttmer (2007). Catching up on technology requires an

upgrade cost related to the size of the breakthrough—depending on whether the vertical

breakthrough is attained by the initiator or by an entrant, it is, respectively, K(λϕ − 1)

or K(Λ − 1). Conversely, as in Howitt (1999), horizontal breakthroughs erode the value

of the initiator and of the exploiters, as their product lines are competed away. It follows

that the entrants’ perspective earnings from innovation fall, and the entrant responds by

adjusting its capital downwards by Kωδ, as illustrated by the last term in equation (19).

As for the other firms in the model, we conjecture that the entrant value scales with

Mtqt, i.e., W (qt,Mt) = wqtMt where we denote by w the scaled value of a perspective

entrant. Using this property, equation (19) boils down to

rw = max
v,h
− ηρWσW −

ζv
2
v2 − ζh

2
h2 + φvv [Λu− w] + φhh [ωx− w]

+ φz (λϕ− 1) (w − κ) + Ψ−v (Λ− 1) (w − κ)−Ψ−h (w − κ)ωδ. (20)

Differentiating this equation with respect to v gives the optimal vertical innovation rate of

entrants:

v(η) =
φv
ζv

(Λu(η)− w) . (21)

This equation suggests that the entrants’ incentives to engage in vertical innovation increase

if the value of the initiator is greater—in which case the “reward” upon attaining a vertical

breakthrough is more attractive. In turn, differentiating equation (20) with respect to h

gives the optimal horizontal innovation rate:

h(η) =
φh
ζh

(ωx(η)− w) . (22)
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This equation implies that the entrants’ incentives to engage in horizontal innovation in-

crease as exploiters are more valuable—in which case the “reward” upon a horizontal break-

through is more attractive.

Creative destruction is defined as the rate at which entrants take over the initiator’s

leadership. Aggregating the rate of vertical innovation across the mass of active entrants

µ thus gives the rate of creative destruction:

Ψv(η) =µ(η)φvv(η). (23)

In turn, the rate of horizontal displacement obtains by aggregating the rate of horizontal

innovation across the mass of active entrants:

Ψh(η) =µ(η)φhh(η). (24)

In these expressions, µ(η) is endogenously determined such that the free-entry condition

w = κ is binding. Lastly, we pin down the aggregate rate at which new technological

clusters endogenously arise, which we denote by I(z,Ψv). Because both initiator and

entrants contribute to vertical innovation aimed at starting new technological clusters,

I(z,Ψv) satisfies

I(z,Ψv) = φz(η) + Ψv(η) =
φ2

ζ
u(η)(λϕ− 1)︸ ︷︷ ︸
Initiator

+µ(η)
φ2
v

ζv
[Λu(η)− κ]︸ ︷︷ ︸

Entrants

(25)

The first term represents the contribution of the initiator to the aggregate vertical inno-

vation rate, whereas the second term is the contribution of entrants. Next, we investigate

the properties of the industry equilibrium.
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3.2 Model analysis

We now analyze the model solution. To disentangle the strengths at play, we start by

considering simpler cases for which we obtain analytical results. We first analyze the

case in which the rate of creative destruction and the rate of horizontal obsolescence are

exogenous. This case is akin to considering firms in isolation, instead of studying them in

the industry equilibrium. As a second step, we allow for endogenous industry dynamics in

two corner cases: an industry in which entrants engage in vertical innovation only, and an

industry in which entrants invest exclusively in horizontal innovation.

3.2.1 Exogenous industry dynamics

Suppose that the rate of creative destruction Ψv and the rate of horizontal displacement

Ψh are exogenous and constant. In this case, the value of the initiator continues to satisfy

equation (11), but Ψv and Ψh are insensitive to the market price of risk η. Solving equation

(14) for given Ψv and Ψh yields the value of the initiator:

u(η) =
r + Ψv(1− α) + Ψhωδ −

√
(r + Ψv(1− α) + Ψhωδ)2 − 2Υ(η)φ

2

ζ
(λϕ− 1)2

φ2 (λϕ− 1)2 ζ−1
. (26)

The next proposition follows (see Appendix A.1.1 for a proof).

Proposition 1 For exogenous Ψv and Ψh, the initiator’s innovation rate satisfies:

z(η) =
r + Ψv(1− α) + Ψhωδ −

√
(r + Ψv(1− α) + Ψhωδ)2 − 2Υ(η)φ

2

ζ
(λϕ− 1)2

φ (λϕ− 1)
, (27)

which is a decreasing function of the market price of risk η.

By abstracting from endogenous industry dynamics—i.e., neglecting that Ψv and Ψh

are themselves functions of η in equilibrium—Proposition 1 shows that a greater market

price of risk leads to a lower innovation rate. In fact, by decreasing the expected profits

from production—and, thus, the expected surplus from innovation—a greater market price
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of risk decreases the initiator’s optimal investment in innovation. This result is in line with

the received wisdom that a greater market price of risk depresses long-term investment

such as R&D.

Consider next the value of exploiters when Ψv and Ψh are exogenous. Solving equation

(18) with respect to x gives:

x(η) =
1

[r + (φz + Ψv) (1− αX) + Ψhωδ]

βω

1− ω

(
1− β

1 + σXρη

) 1
β
−1

Γ
1
β . (28)

This equation illustrates that the exploiter value decreases with Ψv and Ψh, as creative

destruction and horizontal displacement respectively cause exit and an erosion in their

profits through product line obsolescence. When these quantities are exogenous, the value

of the exploiter decreases with η, as it is for the initiator. However, when Ψv, and Ψh are

endogenous, the net impact of η on x is more nuanced, as we show next.

3.2.2 Endogenous industry dynamics in corner cases

We now focus on two corner cases featuring endogenous industry dynamics (i.e., Ψv or Ψh

are endogenous).

Entrants only invest in vertical innovation If entrants invest in vertical innovation

only, the industry features two types of firms: the initiator and the entrants (i.e., there are

no exploiters as entrants do not pursue horizontal innovation).17 In this case, we can solve

for the value of the initiator in closed form, which satisfies the following expression (see

Appendix A.1.2):

u(η) =
1

Λ

(
κ+

√
2ζv(rκ+ ηρWσW )

φv

)
. (29)

Notably, the value of the initiator is an increasing function of the entrants’ exposure to

aggregate risk ηρWσW . Recall that the industry equilibrium requires that entrant value

equals the entry cost κ due to free entry. To offset a greater discounting due to a larger η—

17That is, the initiator is subject to creative destruction, but there is no horizontal displacement.
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which should push the entrant value down—the surplus from innovation needs to increase

through an increase in the value of initiators, and the mass of active entrants adjusts

accordingly—then pushing entrant value up. The next proposition illustrates the sensitivity

of the endogenous equilibrium quantities to η (see Appendix A.1.2).

Proposition 2 When entrants only invest in vertical innovation, the innovation rate of

the initiator satisfies:

z(η) =
φ(λ− 1)

ζΛ

[
κ+

√
2ζv(rκ+ ηρWσW )

φ2
v

]
(30)

and the vertical innovation rate of active entrants satisfies:

v(η) =

√
2(rκ+ ηρWσW )

ζv
. (31)

Both z(η) and v(η) increase with η. At the same time, the mass of active entrants µ(η) as

well as the rate of creative destruction Ψv(η) decrease with η.

In sharp contrast with Proposition 1 (in which the initiator is considered in isolation

so that the rate of creative destruction Ψv is exogenous), Proposition 2 shows that the

optimal innovation rate of the initiator z(η) and of active entrants v(η) increase with the

market price of risk when accounting for the industry equilibrium (and, thus, deriving Ψv

endogenously). Thus, the initiator’s contribution to the industry’s innovative advancement

increases with η. At the same time, Proposition 2 shows that a greater market price of risk

has a negative impact on the extensive innovation margin, leading to a reduction in the

mass of active entrants. That is, η effectively acts as an entry barrier. Put together, these

results imply that a higher η bears two offsetting effects on the overall entrants’ contribution

to innovation. First, active entrants invest more in innovation when the market price of

risk is higher—in fact, v increases with η. Second, the mass of active entrants shrinks if

η is greater. Proposition 1 illustrates that the second strength dominates and, thus, the

rate of creative destruction Ψv decreases with η. As a result, the incumbent initiator is less
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threatened by competition in innovation and, therefore, is more valuable and has greater

incentives to spend on R&D as η rises.

Entrants only engage in horizontal innovation We next consider the case in which

entrants only pursue horizontal innovation. As in the full model, there are three types of

firms in the economy: initiator, entrants, and exploiters. However, differently from the full

model, the initiator is not subject to creative destruction but to horizontal displacement

only—i.e., the initiator is infinitely-lived in this case. Entrants attaining a horizontal

breakthrough become exploiters, whose value satisfies the following expression:

x(η) =
1

ω

(
κ+

√
2ζh(rκ+ ηρWσW )

φh

)
. (32)

Differently from equation (28) in which the exploiter is considered in isolation (so that the

rate of horizontal displacement Ψv is exogenous), equation (32) suggests that the exploiter

value increases with η when Ψv is endogenous. As in the case with vertical innovation only,

the industry equilibrium requires that entrant value equals the entry cost for the free-entry

condition to be satisfied. Thus, to offset the value-decreasing effect of a greater market

price of risk, the surplus from horizontal innovation needs to increase through an increase

in the value of exploiters and an adjustment in the mass of active entrants.18 We then have

the following result (see Appendix A.1.3).

Proposition 3 When entrants invest in horizontal innovation only, their investment in

innovation satisfies

h(η) =

√
2(rκ+ ηρWσW )

ζh
, (33)

which is an increasing function of η.

The incentive to invest in horizontal innovation stems from the perspective of becoming

an exploiter. Thus, if the exploiter value increases with η, the optimal horizontal innovation

18Recall that a vertical breakthrough turns an entrant into the new incumbent initiator, whereas a
horizontal innovation turns an entrant into an exploiter.
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rate h increases too.19 This property is noteworthy because, as we show in the analysis of

the full model featuring both vertical and horizontal innovation (see Section 3.2.3 below),

this monotonicity does not hold. That is, the analysis in these corner cases helps us pin

down the strengths at play in the full model, which we analyze next.

3.2.3 The full model

When entrants invest in both horizontal and vertical innovation, the rate of creative de-

struction and the rate of horizontal displacement are solved endogenously through the

maximization problem of the entrants, which depends on the prospect of becoming an ini-

tiator or an exploiter. In turn, the values of the initiator and the exploiters depend in

equilibrium on the rate of creative destruction and the rate of horizontal displacement.

While the richness of our model prevents us from deriving these quantities analytically, we

investigate the predictions of our model numerically.

Baseline parameterization Table 1 reports our baseline parameterization. We set the

risk-free rate to 1%. Following previous models of innovation, we normalize φ = φv = φh

to one.20 We assume that the R&D cost parameter for entrants’ vertical innovations ζv

(i.e., for innovations that improve a technology that the firm does not currently own) is

ten times larger than for the initiator’s innovation ζ (i.e., for innovations improving a tech-

nology the firm already has expertise about), which is in the ballpark of Akcigit and Kerr

(2018). Furthermore, we assume that ζh is smaller than ζv to acknowledge that horizontal

innovation—being more exploitative than explorative— is less costly than vertical inno-

vation. The values of the quality jumps upon a breakthrough λ = 1.055 and Λ = 1.12

are also in line with Akcigit and Kerr (2018). We set ϕ = 1.14, which is consistent with

the estimates of Argente, Lee, and Moreira (2020) about the contribution of new products

to sales growth. Notably, the inequality ϕ > λ implies that the breakthroughs by the

19In turn, to solve for µ and z, we need to solve the system of equations including the HJB of the initiator
and of the exploiters (see Appendix A.1.3).

20See, for instance, Akcigit and Kerr (2018) or Akcigit, Hanley, and Serrano-Velarde (2021), who also
study heterogeneous innovations.
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initiator is more exploitative than explorative, consistent with Gao, Hsu, and Li (2018)

among others.21 We set δ to 0.2, which captures the overlap between existing and new

innovations reported by the OECD (2015).22 Furthermore, we set ω to 0.25, which implies

that horizontal innovations lead to a 5% drop in the initiator’s output, which is consistent

with the estimates of Kogan et al. (2017).

We set β = 0.13, so that the markup is consistent with the estimates by Hall (2018).

Moreover, in our one-state model, we normalize Γ = 1. We calibrate σ so that the cash flow

volatility of the initiator is about 11% (as in Malamud and Zucchi, 2019). Moreover, we

assume that σX < σ to acknowledge that, differently from initiators, exploiters do not have

an active R&D program and, thus, their cash flow volatility is smaller.23 In turn, we assume

that the entrants’ volatility is greater and equal to 20%, which is consistent with Begenau

and Palazzo (2021) who show that entrants have increasingly exhibited greater volatility

and R&D expenditures over time. Moreover, we acknowledge that entrants, as they are

exposed to the technological risk of their R&D ventures, are comparatively more exposed

to idiosyncratic risk than actively-producing firms (initiator and exploiter)—consistently,

we assume that ρ = 0.55 and ρW = 0.2. We set the recovery rate in liquidation of the

exploiters—which do not invest in innovation—to 0.85, consistent with Korteweg (2010).

By setting a lower recovery rate for the initiator—which invests in innovation—we recognize

that R&D entails asset intangibility, which leads to a greater value loss in liquidation. We

set the magnitude of the entry cost to κE = 0.015, which gives a rate of creative destruction

consistent with Acemoglu et al. (2018).

The equilibrium impact of the market price of risk on innovation We start by

investigating the sensitivity of the model’s endogenous quantities to the market price of

risk η. Consistent with the analytical results in Proposition 2, Figure 1 shows that z and

v increase with η in the full model. That is, when considering the endogenous industry

21Consistently, Arora, Belenzon, and Sheer (2021) find that firms are investing more in development in
recent years.

22The degree of overlap is captured by the backward citation index, see OECD (2015). The report shows
that, depending on the sector, the index ranges from slightly below 0.1 to slightly above 0.3.

23Recall that volatility for these firms is given by σX and σXXs.
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Figure 1: Firm values and optimal innovation rates. The figure shows the initia-
tor’s and the exploiters values, as well as the initiator’s and the entrants’ optimal innovation
rates (both vertical and horizontal) as a function of η.

equilibrium—and, thus, recognizing that firm’s incentives to invest in innovation depend

on the industry structure in which a firm operates—the market price of risk has a positive

effect on active firms’ innovation rate aimed at starting new technological clusters (i.e.,

the more explorative type of innovation). Notably, this result overturns the conventional

wisdom (supported by Proposition 1 in which we abstract from industry dynamics) that

discount rates frustrate long-term risky investment such as R&D.

Whereas a higher market price of risk supports the vertical innovation rate of active

entrants (the intensive margin), Figure 2 indicates that it has a negative impact on the

mass of active entrants (the extensive margin), which is shown to be decreasing with η.

That is, our model suggests that a higher η effectively acts as an entry barrier. Confirming

the result in Proposition 2, Figure 2 shows that the declining pattern of µ more than offsets

the increasing pattern of v in η—as a result, the rate of creative destruction Ψv decreases

with η. A lower Ψv implies less competitive pressure on active firms, which spurs the more

explorative R&D investment aimed at starting new technological clusters.

Moving to horizontal innovation, Figure 1 shows that h is hump-shaped in η. As

illustrated by equation (22), the entrants’ investment in horizontal innovation is directly

linked to the prospect of becoming an exploiter. Consistently, Figure 1 shows that the

sensitivity of h to η is largely driven by the non-monotonic impact of η on the exploiter
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Figure 2: Industry equilibrium and the market price of risk. The figure shows
the mass of active entrants (µ), the rate of creative destruction (Ψv), the rate of horizontal
displacement (Ψh), and the endogenous arrival rate of new technological clusters (I) as a
function of η.

value, x.24 This result is in contrast with Proposition 3, showing that h increases with η if

entrants only invest in horizontal innovation. In fact, the interaction between competition

in the vertical and horizontal dimensions triggers nontrivial dynamics. At lower levels of η,

h increases with η as the rate of creative destruction concurrently declines, and so does the

associated liquidation risk of the exploiter—i.e., the lower threat of creative destruction

spurs horizontal innovation. However, as η increases further, the higher innovation rate

of the initiator increases the exploiters’ liquidation risk, leads to a decline in the exploiter

value x, and reduces the entrants’ incentives to invest in horizontal innovation.

These results illustrate that a higher market price of risk stimulates the explorative

type of innovation and deters the exploitative type. This can also be seen at the industry

level, through the relative magnitude of Ψh and Ψv (see Figure 2, middle panel). When η is

sufficiently low, the rate of horizontal displacement Ψh is greater than the rate of creative

destruction Ψv, meaning that entrants as a whole invest more in horizontal innovation—

thus, innovation is more exploitative. Conversely, when η is sufficiently high, the rate of

creative destruction Ψv is greater than the rate of horizontal displacement Ψh, meaning

that entrants invest more in vertical innovation—thus, innovation is more explorative.

24Conversely, the figure shows that the initiator value increases with η, consistent with Proposition 2.
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A question then arises as to what is the net impact of the market price of risk on the rate

I at which new technological clusters arise. As illustrated by equation (25), this quantity

is the sum of the contribution of the initiator (φz) and of the entrants (Ψv). Because z

increases whereas Ψv decreases with η, the sensitivity of I to η is ambiguous. Figure 2

shows that, under our baseline parameterization, I is U-shaped in η. That is, perhaps

surprisingly, our model shows that an increase in the market price of risk can stimulate the

advent of new technological clusters. Again, this prediction contrasts with the textbook

intuition that discount rates frustrate long-term investment. Our model suggests that the

market price of risk importantly affects the composition of innovation within an industry—

hence, a higher market price of risk need not lead to a reduction in the industry innovation

rate.

The interaction between vertical and horizontal innovation As illustrated above,

considering both vertical and horizontal R&D is key to understand the equilibrium dy-

namics of an innovative industry and its sensitivity to the market price of risk. To further

investigate the interaction between vertical and horizontal innovation, Table 2 exhibits the

model’s endogenous quantities when considering the cases in which entrants invest in hor-

izontal or vertical innovation only (as analyzed in Section 3.2.2) and in the full case, for

different values of ω. Because horizontal innovation is less appealing when ω is smaller—

as horizontal breakthroughs create a smaller mass of new products and, thus, are less

profitable—the case with horizontal innovation only exists if ω is sufficiently large (i.e.,

the bottom panel of the table).

Intuitively, introducing horizontal innovation—i.e., moving from the case with vertical

innovation only to the full case—has an ambiguous effect on the mass of active entrants

µ. If horizontal innovation is sufficiently appealing (ω is larger), µ should increase when

moving to the full case. At the same time, however, horizontal innovation frustrates vertical

innovation by making the initiator and exploiters more exposed to product obsolescence—a

strength that reduces the mass of entrants µ. Table 2 suggests that, under our baseline

parameterization, the second strength dominates and, thus, µ decreases when introducing
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Figure 3: The impact of horizontal innovation on the industry equilibrium.
The figure shows the mass of active entrants µ, the rate of creative destruction (Ψv) and
of horizontal displacement (Ψh), and the endogenous arrival rate of technological clusters
(I) as a function of ω.

horizontal innovation.25

In the full case with horizontal and vertical innovation, these opposing strengths imply

that there is a tension regarding the effects of horizontal innovation (gauged by the param-

eter ω) on entry incentives. Indeed, Figure 3 illustrates that the mass of active entrants µ

is U-shaped in ω. The reason is that the surplus from horizontal innovation increases with

ω, but the surplus from vertical innovation simultaneously declines. As a result, the rate

of horizontal displacement Ψh sharply increases, whereas the rate of creative destruction

Ψv decreases with ω, which causes the arrival rate of new technological clusters I to be

decreasing in ω too.

Table 2 also shows that horizontal innovation decreases the initiator’s innovation (z).

The drop is wider if ω is larger, in which case horizontal breakthroughs trigger a sharper

drop in the initiator’s product lines. Similarly, the entrants’ rate of vertical innovation v

drops notably if ω is larger. Folding in the effects on µ and v, Table 2 shows that the

rate of creative destruction decreases when introducing horizontal innovation—i.e., Ψv is

lower in the full case than in the case with vertical innovation only. This result, together

25In unreported results, we find that the first strength dominates if ω is unrealistically high, in which
case the incentives to invest in horizontal innovation are disproportionately greater than the incentives to
invest in vertical innovation.
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Figure 4: Cost of entry and the industry equilibrium. The figure shows the
initiator’s and the entrants’ optimal innovation rates (z, v, and h), the mass of active
entrants (µ), and the endogenous arrival rate of technological clusters (I) as a function of
κ.

with the aforementioned impact on z, implies that horizontal innovation frustrates vertical

innovation. It also implies that a greater emphasis on horizontal innovation leads to a lower

industry turnover—i.e., on average, the initiator is expected to remain the technology leader

for longer.

Consider now the effect of introducing vertical innovation on the industry equilibrium,

i.e., moving from the case with horizontal innovation only to the full case. Table 2 shows

that vertical innovation has a positive impact on the rate of horizontal displacement. This

result is consistent with the evidence in Braguinsky et al. (2020), showing that vertical

innovations have notable spillovers into horizontal expansions. In fact, the upside associated

with vertical innovation—i.e., the prospect of becoming the next industry incumbent—

spurs an increase in the mass of active entrants that, in turn, boosts the aggregate rate

of horizontal displacement Ψh too. This increase is driven by the sharp rise in the mass

of active entrants. At the same time, the rate of horizontal innovation h sharply drops

when moving to the full case—i.e., because vertical innovation promises a greater upside

potential (the perspective of becoming the new industry initiator), active entrants in the

full case shift from horizontal to vertical innovation.

To further understand the interaction between vertical and horizontal innovation, Figure
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4 investigates how the entrants’ cost of entry—as gauged by the parameter κ—affects R&D

investment. Our model shows that the magnitude of the entry cost largely impacts the

type of innovation pursued by firms in the industry. Namely, a greater cost of entry fosters

vertical innovation but deters horizontal innovation. As shown by Figure 4, this translates

into the mass of active entrants being U-shaped with respect to κ. In fact, for low levels

of κ, a greater cost of entry curbs entrants’ incentives to invest in horizontal innovation;

by contrast, when κ is sufficiently large, the negative effect of κ on horizontal innovation

by entrants is shadowed by their increased incentive to innovate vertically. This positive

effect, together with the increasing pattern of z in κ, jointly explain why the arrival rate

of technological clusters increases with the cost of entry.

4 Time-varying market price of risk

We now assume that the market price of risk varies with the state of the economy, being

ηG in the good state and ηB > ηG in the bad state. For the sake of brevity, we report the

derivation of the firm’s optimal choices and of the industry equilibrium in Appendix A.2.

Before analyzing the full model with both vertical and horizontal innovation, it is worth

considering again the corner cases analogous to those in Section 3.2.2 for the one-state

model. We show the following results (proofs are in Appendix A.2.2).

Proposition 4 Consider the case in which the market price of risk is time varying and

the inequality ηB > ηG holds. If entrants only engage in vertical innovation, the initiator’s

and active entrants’ innovation rates satisfy, respectively,

zj(ηj, ηj−) =
φ

ζ
(λϕ− 1)uj(ηj, ηj−),

and

vj(ηj, ηj−) =
φv
ζv

[Λuj(ηj, ηj−)− κ] ,

and are countercyclical—i.e., zB > zG and vB > vG. Conversely, the rate of creative
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destruction Ψvj and the mass of active entrants µj are procyclical—i.e., ΨvG > ΨvB and

µG > µB. The entrants’ extensive innovation margin (µj) is more sensitive to variations

in the market price of risk than the intensive margin (vj). If, instead, the entrants only

engage in horizontal innovation, their optimal innovation rate satisfies

hj(ηj, ηj−) =
φh
ζh

[ωxj(ηj, ηj−)− κ] . (34)

and is countercyclical—i.e., hB > hG.

Proposition 4 illustrates how time variation in the market price of risk affects the in-

dustry equilibrium. The proposition suggests that the innovation rate of active firms is

countercyclical—i.e., it is greater when the market price of risk is larger (in the bad state).

This holds in both corner cases with either vertical or horizontal innovation only. Propo-

sition 4 also shows that the greater market price of risk in state B bears a negative im-

pact on the extensive margin—i.e., the mass of active entrants declines. Moreover, with

time-varying discount rates, the variation in the extensive margin is greater than the cor-

responding variation in the intensive margin. This implies that the procyclicality of µi

then extends to the rate of creative destruction, which is procyclical too. That is, in the

good (bad) state, the mass of active entrants is larger (smaller), creative destruction is the

highest (lowest), and incumbent firms reduce (increase) their R&D investment.

As we show in our quantitative analysis that follows, the greater sensitivity of the

extensive margin to variations in the market price of risk has important implications for

the average impact of fluctuations on industry outcomes vis-à-vis an identical economy

featuring no fluctuations.

Understanding innovation cyclicality through variations in the market price of

risk We next analyze the model featuring both vertical and horizontal innovation. On

top of the parameters in Table 1, we assume that π̃G = 0.1 and π̃B = 0.4 under the physical

measure, meaning that the good and the bad states are expected to last 10 years and 2.5

years, respectively. Moreover, we set θG = −θB = 0.08, which implies that risk averse

33



investors expect the good state to be shorter and the bad state to last longer than under

the physical measure. Throughout the analysis, we consider two cases. First, we only

allow ηi to vary across different states and assume that ΓG = ΓB = 1—i.e., the demand

shift parameter is constant. Second, to acknowledge that variations in demand are an

important component of firms’ innovation incentives since Schumpeter (see also Caballero

and Hammour, 1994), we allow the demand function to vary as illustrated in equation

(2)—namely, we keep ΓB = 1 and assume that ΓG = 1.02, so that the wedge of industry

profits between the good and the bad state is above 30% in our baseline.26

Table 3 compares the endogenous quantities in the G and B states. In the top panel,

we only vary ηi across the states, whereas we also vary the demand shift Γi in the bottom

panel. Consistent with the result in Proposition 4, we find that investment in innovation

by active firms is countercyclical—i.e., it is higher in state B, in which the market price of

risk is larger. This result is in line with the Schumpeterian view that firms should invest

more in innovation in recessions than in expansion, as the opportunity cost of foregone

revenues is smaller. Importantly, in our model, this is the case both when abstracting (top

panel) and when accounting for time-varying demand (bottom panel)—i.e., fluctuations in

the market price of risk can, by themselves, generate this pattern.

Furthermore, Table 3 shows that the mass of active entrants is procyclical—i.e., fewer

entrants are active when the market price of risk is larger in the B state. That is, the

higher market price of risk in the B state has the most detrimental effect on the extensive

margin, by reducing the mass of firms actively investing in innovation. At the industry

level, the table also shows that the procyclicality of µ more than offsets the countercycli-

cality of firm-level innovation in both the vertical and horizontal dimension—as a result,

Ψv and Ψh are both procyclical. That is, active firms face a greater competition in the

innovation dimension—through greater creative destruction and a greater rate of horizontal

innovation—when the market price of risk is lower in the good state. The analysis also

26The variation in profits across states in our model is therefore consistent with the change we observe
between peaks and troughs in total (detrended) earnings before interest, depreciation and amortization of
R&D-active firms in Compustat.
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shows that the aggregate innovation rate at which new technological clusters arise, I, is

procyclical too.

Our analysis then illustrates that variations in discount rates are an important driver of

innovation cyclicality within an industry. Namely, when the market price of risk is high (in

bad states of the economy), the mass of entrants should shrink, and active firms (initiator

and entrants) should invest more in innovation. In contrast, when the market price of risk

is low (in good states of the economy), we should see a considerable increase in the mass of

entrants, which in turn should reduce the innovation rate of active firms. In other words,

these results provide novel theoretical grounds to the empirical literature that investigates

the cyclical behavior of R&D investment, by posing the accent on a relatively unexplored

aspect, i.e., the effect of fluctuations in discount rates on an industry’s R&D composition.

Our paper can thus rationalize the observed procyclical innovation rates at the aggregate

level—a pattern that has been consistently reported starting from Griliches (1984)—which

appear to be at odds with the Schumpeterian prediction that firms should invest more in

recession than in expansion. Consistent with the empirical work by Howell et al. (2020), we

show that strengths steering pro- and countercyclicality coexist. Indeed, our model shows

that the lack of countercyclicality comes mostly from the extensive margin, a pattern

that is in line with the evidence in Babina, Bernstein, and Mezzanotti (2020).27 Also

consistent with Babina, Bernstein, and Mezzanotti (2020), we show that incumbent firms’

R&D engagement does not dwindle in bad states of the economy. Furthermore, in line

with Howell et al. (2020), our paper shows that the aggregate contribution of entrants to

innovation is higher in good states of the economy—this notwithstanding, the firm-level

investment of active startups is higher in bad states, as predicted by our model.

The impact of fluctuations in the market price of risk Having analyzed how the

varying level of the market price of risk affects R&D cyclicality, we next investigate the

effect of these fluctuations vis-à-vis an environment in which η is fixed. To this end, the

27This pattern is also consistent with Brown, Fazzari, and Petersen (2009), who focus on financing
frictions as an important contributor.
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last two columns of Table 3 report the endogenous quantities of interest in the one-state

model (as analyzed in Section 3) as well as their averages in the two-state case. To make

the one- and the two-state cases comparable, we assume that the time-invariant market

price of risk in the one-state is equal to the average in the two-state model.28

Table 3 shows that fluctuations in the market price of risk affect the firm-level innova-

tion rate only slightly under our baseline parameterization, with the entrants’ horizontal

innovation rate being only modestly smaller in the two-state model on average. In turn,

fluctuations in the market price of risk have a considerable impact on the average mass

of active entrants, consistent with Proposition 4. Table 3 shows that the average mass

of active entrants in the two-state model is greater than its counterpart in the one-state.

Moreover, the greater mass of active entrants implies that the rate of creative destruction

is greater, on average, in the two-states vis-à-vis the one-state case. As a result, the rate

of arrival of new technological clusters I is greater in the presence of fluctuations in the

market price of risk, on average. In other words, our model shows that these fluctuations

induce a greater industry turnover which, in turn, is beneficial to the emergence of new

technological clusters. These patterns are confirmed in the bottom panel, in which we also

account for demand-shifts over the business cycle. That is, our paper supports the view

that fluctuations are not detrimental to the industry equilibrium.29

We also investigate the sensitivity of the equilibrium quantities with respect to the

market price of risk in the two states, ηG and ηB. Figure 5 shows that zj increases with the

magnitude of the market price of risk in the contemporaneous state ηj—consistent with

the result in the one-state model—whereas it is quite insensitive to the market price of risk

in the non-contemporaneous state ηj−. By contrast, the mass of active entrants µj and the

arrival rate of new technological clusters Ij are notably sensitive to the market price of risk

in both the contemporaneous and in the non-contemporaneous states, j and j−. Namely,

28I.e., we assume that η̄ = ηGπB+ηBπG

πB+πG
—i.e., in the one-state. Similarly, in the bottom panel, we set

Γ̄ = ΓGπB+ΓBπG

πB+πG
in the one-state.

29Manso, Balsmeier, and Fleming (2019) show that macroeconomic fluctuations stir a more balanced
mix between explorative and exploitative innovation. In line with Manso, Balsmeier, and Fleming (2019),
in unreported results we find that h can be procyclical when allowing for time variation in Γ.
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Figure 5: Time-varying extensive and intensive margins. The figure shows how the
initiator’s innovation rate (zj), the mass of entrants (µj), and the endogenous arrival rate of
technological clusters (Ij) vary with the market price of risk either in the contemporaneous
state (ηj) or in the non-contemporaneous state (η−j, bottom panel). The top panel varies
the market price of risk in the G state, whereas the bottom panel varies the market price
of risk in the B state.

these quantities decrease with the market price of risk in the contemporaneous state j, but

increase with the market price of risk associated with the non-contemporaneous state j−.

Specifically, an increase in the market price of risk shifts entrants from the contemporaneous

to the non-contemporaneous state, then also affecting the arrival rate of new technologies.

This effect then sheds light on the importance of the market price of risk in transferring

resources across states of the economy.
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5 Asset Pricing Implications

We conclude our analysis by studying the asset pricing implications of our model. An

important insight that stems from our analysis is that the resolution of the idiosyncratic

uncertainty associated with innovation can dramatically affect firms’ risk premia (Berk,

Green, and Naik, 2004). Each firm in our model is subject to the two sources of systematic

risk: the diffusion risk and the jump risk associated to discrete changes in the state of

the economy. Simultaneously, firms are subject to different sources of idiosyncratic risk:

the idiosyncratic component of cash flow risk, uncertainty associated to its own innovation

outcomes, or shocks linked to vertical or horizontal innovation by rival firms (i.e., creative

destruction or horizontal displacement). Although there is no risk premium earned on

idiosyncratic risk per se, the expected resolution of innovation uncertainty either augments

or mitigates firms’ exposure to systematic risk. Firms’ innovation strategies vary with

systematic changes in discount rates, and risk premia adjust accordingly.

A heuristic derivation of risk premia in the two state model involves a comparison of

the HJB equations under the physical and risk-neutral measures, as in Bolton, Chen, and

Wang (2013). We define risk premia as expected returns in excess of the risk free rate r.

Let the risk premium of the initiator in state j be RU,j, and that of the exploiter be RX,j.
30

For the initiator, we obtain the expression:

RU,j ≡ ρσηj
yj
uj

+ π̃j
(
eθj − 1

) uj − u−j
uj

, (35)

where the first term is the risk premium associated with the diffusion risk, whereas the

second term is the premium associated with the jump risk.31 Similarly, the expression for

the risk premium of the exploiter is given by:

RX,j ≡ ρσXηj
ω

1− δω
yX,j
xj

+ π̃j
(
eθj − 1

) xj − x−j
xj

. (36)

30We do not analyze the corresponding risk premium of the entrant as it is likely unobservable by the
econometrician (entrants should be interpreted as startups): It corresponds to a risk premium on seed
capital equal to ρWσW

ηj
κ .

31The risk premium in the one-state case can be thus obtained by setting πj = 0 in equation (35).
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Competitive pressure by entrants and risk premia The first core prediction of the

model refers to how competitive pressure by entrants affects incumbents’ (initiator and

exploiters) risk premia. To disentangle the strengths at play within the industry, we start

by considering these risk premia in the corner cases in which entrants engage exclusively

in either vertical or horizontal innovation, for which we obtain analytical solutions.

Proposition 5 If entrants only engage in vertical innovation, the initiator’s risk premium,

RU,j, is increasing in both the frequency and size of entrants’ innovations (φv and Λ).

Similarly, if the entrants only engage in horizontal innovation, the exploiter’s risk premium,

RX,j, is increasing in the frequency and size of entrants’ innovations (φh and ω) and in

the degree of overlap between ensuing new products and those of the initiator (δ).

Proposition 5 shows that the key parameters that affect the entrants’ innovation rate

impact the risk premia of the initiator and of the exploiter (proofs are in Appendix A.3.1).

Namely, if entrants engage exclusively in vertical innovation, an increase in the likelihood

of a technological breakthrough by entrants (i.e., an increase in φv) results in higher risk

premia for the initiator. Similarly, when the scale of breakthroughs is greater (captured

by a higher value of Λ), the entrants’ investment on vertical innovation v increases, the

competition by entrants also increases through an increase in the rate of creative destruc-

tion, and hence there is a greater likelihood of liquidation for the initiator. It follows that

greater competitive pressure by entrants makes the initiator riskier.

Similarly, if entrants engage exclusively in horizontal innovation, Proposition 5 indicates

that the prospect of greater displacement in product lines increases the risk premia of

exploiters. A rise in the likelihood of horizontal innovation by entrants (i.e., an increase in

φh), or more significant horizontal displacement by entrants (captured by a higher value of

ω or δ), consistently result in higher risk premia for the exploiters.32

The qualitative predictions in Proposition 5 are confirmed in the full model with both

vertical and horizontal innovation. Moreover, in the full case, the risk premium of the

32As we cannot solve for the initiator’s risk premium in closed form in the case with horizontal innovation
only, our analytical results focus on the exploiters’ risk premium.
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Figure 6: Risk Premia and Horizontal Displacement. The figure shows the risk pre-
mia of the initiator and of the exploiters in state G, the initiator’s optimal innovation rate,
and the risk premium of the initiator in excess of the exploiters’ as a function of entrants’
horizontal jump ω in the full model featuring both vertical and horizontal innovation.

initiator is also affected by the obsolescence triggered by horizontal innovation: Figure 6

confirms that the risk premium of the initiator is increasing in ω. Intuitively, a higher ω

boosts the incentives of entrants to innovate horizontally, and in turn erodes the innovation

incentives of the initiator, whose risk premium then increases with ω in either state.33

Figure 6 additionally shows that the risk premium of the initiator in excess of that of

exploiters is U-shaped in ω. Thus, while an increase in horizontal displacement increases

the risk premia of both initiator and exploiters in the full model, such increase may affect

mostly either the initiator or exploiters, in any state.

Put together, our findings in Proposition 5 and in the full model thus suggest that

innovation by competing entrants make incumbents (either initiator or exploiters) riskier—

regardless of whether innovation by entrants is vertical or horizontal. By contrast, the

literature on product market competition suggests that endogenous entry by rival firms

makes incumbents safer (i.e., Bustamante and Donangelo, 2017; Babenko, Tserlukevich,

and Boguth, 2020). In these models, unlike ours, firms compete for market share in the same

product market: Firms do not innovate nor compete in innovation, and entry by new firms

33The pattern on incumbents’ risk premia with respect to omega for state B is qualitatively the same as
that shown in Figure for state G.
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Figure 7: Risk Premia and the Initiator’s Innovation Intensity. The figure
shows the risk premia of the initiator and of the exploiters in state G, the initiator’s
optimal innovation rate, and the risk premium of the initiator in excess of the exploiters’
as a function of the initiator’s Poisson intensity φ in the full model featuring both vertical
and horizontal innovation.

erodes firms’ markups in equilibrium. It follows that the source of rivalry among competing

firms—i.e., whether firms compete in innovation or for market share in product markets—is

critical to understand how actions by entrants affect the risk premia of incumbents. Our

model adds to the insights in Bloom, Schankerman, and Van Reenen (2013) in providing

a novel mechanism to identify the nature of firm rivalry, through the impact of rival entry

on the expected returns of incumbents.

Initiator-exploiter interactions and risk premia The full model also characterizes

how the interactions between the initiator and exploiters affect risk premia. In particular,

we find that the risk premium of the initiator decreases if its own investment in vertical

innovation increases—indicating that the ability of the initiator to innovate acts literally

as insurance against competition in innovation. In our calibration, a higher intensity of

technological breakthrough by the incumbent (captured by an increase in φ) boosts the

incentives of the initiator to invest in innovation (leading to a higher value of zj), which

in turn reduces its risk premium. Simultaneously, an increase in φ leads to a higher risk

premium of the exploiter, as it increases its liquidation probability associated with an ini-

tiator’s breakthrough. Figure 7 illustrates these findings, and shows that the difference in
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risk premia across incumbents, RU,j −RX,j decreases for higher values of φ.

In sum, either when we look at interactions between entrants and incumbents or between

the initiator and exploiters, the model yields the same qualitative prediction. Innovation

by competitors increases a firm’s risk premium, whereas a firm’s own innovation acts as

insurance against innovation by rival firms. These qualitative results are consistent with

the patent race model of two firms by Bena and Garlappi (2020), in which the expected

return of one firm decreases with its own innovation output and increases with that of its

rival. Bena and Garlappi (2020), however, also predict that the leader in the patent race

is always safer. Our model with heterogeneous innovation and endogenous entry suggests

that the initiator needs not be safer than the exploiters in equilibrium, as indeed shown in

the right panel of Figure 7. Thus, the ability of the initiator to innovate and hence compete

in the technological dimension—vis-à-vis the lack of innovation by the exploiters—is not

sufficient to make the exploiters riskier unconditionally.

6 Concluding remarks

The study of corporate innovation—and in particular, of its underlying determinants—

is key to understand the real economy. Our paper highlights that discount rates are an

important determinant of R&D investment decisions. In contrast with the conventional

wisdom that higher discount rates deter long-term investment, we show that higher discount

rates can encourage innovation in the intensive margin, and spur the emergence of new

technologies stemming from explorative innovation.

Our results further highlight that studying the impact of discount rates when allowing

for competition in innovation—that is, firms’ rivalry in the technology space—is key to

understand the composition and nature of R&D at the industry level. The model reconciles

the Schumpeterian view that firms should innovate more intensively in recessions, with the

observed procyclicality of aggregate R&D investment. Allowing for firms’ interaction in

the technology space is also key to understand the interrelation of firms’ risk premia.

42



Overall, our findings shed light on the importance of studying firms’ innovation deci-

sions in industry equilibrium while accounting for the level and time-variation of discount

rates—two determinants of R&D investments that are usually overlooked in macroeconomic

studies, and on which we intend to elaborate further in future research.
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A Appendix

A.1 Proofs of the results in Section 3

Using Girsanov theorem, the risk-neutral dynamics of entrants’ cash flows satisfy

dCWt =

[
−
(

1

2
ζvv

2
t +

1

2
ζhh

2
t + ηρWσW

)
dt+ σWdB

W
t

]
Mtqt (37)

where we denote by BW
t the risk-neutral counterpart of B̃W

t . Similarly, the risk-neutral dynamics
of the exploiters’ cash flows satisfy

dCXt =YXt (pXt − 1− ηρσX)MXtdt+ σXYXtMXtdB̃
X
t (38)

where we denote by BX
t the risk-neutral counterpart of B̃X

t .
To complement the model solution reported in Section (3.1), consider the valuation equation

of entrants. Substituting equations (21) and (22) back into the HJB equation (20) gives:

rw =− ηρWσW +
φ2
v

2ζv
[Λu− w]2 +

φ2
h

2ζh
[ωx− w]2 + φz (λϕ− 1) (w − κ)

+ Ψ−v (Λ− 1) (w − κ)−Ψ−h ω(w − κ) (39)

Using the free-entry condition w = κ, the above equation boils down to

rw =− ηρWσW +
φ2
v

2ζv
[Λu− w]2 +

φ2
h

2ζh
[ωx− w]2 (40)

becomes a function of u and x, which are endogenous. In turn, the valuation equation of the
initiator u (equation (14)) is a function of Ψv and Ψh, which are themselves endogenous functions
of µ, u, and x. Similarly, the valuation equation of the exploiter x (equation (16)) depends on
z, Ψv, and Ψh. As a result, we solve the system of equations (14), (16), and (40) to get the
endogenous quantities µ, u, and x, which in turn we substitute into equations (13), (21), and
(22) to get the optimal innovation rates z, v, and h. Finally, using the expressions for v and h,
together with µ, we pin down Ψv and Ψh.

A.1.1 Proof of Proposition 1

The expression for z(η) when considering exogenous industry dynamics simply follows by substi-
tuting equation (26)—solved for a given (exogenous) Ψv and Ψh—into equation (13). Notably,
z(η) is a function of η through the function Υ(η), defined in Section 3.1. As

Υ′(η) = −ρσ
(

1− β
1 + ηρσ

) 1
β

Γ
1
β < 0

Because this quantity decreases with η, then z(η) decreases with η too, and the result follows.
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A.1.2 Proof of Proposition 2

In the case considered in Proposition 2, entrants only focus on vertical innovation. Thus, the in-
dustry features only the initiator and the mass of entrants, and there is no horizontal displacement.
In this case, the value of the initiator satisfies the following HJB equation

rU(q,M) = max
z,Y

MY (p− 1− σηρ)− ζ z
2

2
qM + φz [U(λq, ϕM)− U(q,M)]

+ Ψv [αU(q,M)− U(q,M)] (41)

where the expressions for the optimal innovation rate, production quantity, and selling price are
given by equations (13) and (12). However, in this equation, Ψv is endogenous and derived by
solving for the optimal policies of the entrants.

Consider the optimal policies of a given entrant, who only invests in vertical innovation by
assumption. The value of an entrant, denoted by W (q,M), satisfies the following HJB equation:

rW (q,M) = max
v≥0

−qM
(
ηρWσW +

ζv
2
v2

)
+ φvv [U(Λq,M)−W (q,M)] (42)

+ φz [W (λq, ϕM)−W (q,M)−K(λϕ− 1)] + Ψ−v [W (Λq,M)−W (q,M)−K(Λ− 1)]

where the terms admit a similar interpretation to equation (19). Using the same scaling property
used in the full model and differentiating with respect to v gives the expression for the optimal
innovation rate reported in equation (21). Plugging the optimal v back into the HJB gives:

rw = −ηρWσW +
φ2
v

2ζv
[Λu− w]2 +

[
φz (ϕλ− 1) + Ψ−v (Λ− 1)

]
(w − κ). (43)

Using the free entry condition w = κ, we can then solve the above equation with respect to u,
which then gives equation (29). By substituting u into (13) and (21) then gives the expressions
for z(η) and v(η) reported in Proposition 2. It is straightforward to show that these endogenous
quantities increase with η.

We now prove the sensitivity of Ψv(η) and µ(η) with respect to η. Scaling equation (41) by q
and M , substituting the optimal y and z, and solving with respect to Ψv(η) gives:

Ψv(η) =
1

(1− α)u(η)

[
φ2

2ζ
(λϕ− 1)2 u2(η)− ru(η) + Υ(η)

]
=

1

1− α

(
φ2

2ζ
u(η) (λϕ− 1)2 − r +

Υ(η)

u(η)

)
Differentiating with respect to η gives

Ψ′v(η) =
Υ′(η)

u(η)(1− α)
−
[
Υ(η)− φ2(λϕ− 1)2u2(η)

2ζ

]
u′(η)

u2(η)(1− α)
. (44)

The first term is negative as 1 − α > 0, and Υ′(η) < 0 as shown in Appendix A.1.1. The
second term is also negative, as u′(η) > 0 (as is straightforward from equation (29)) and the
term in parenthesis is positive when we consider values of η that rule out the degenerate case
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in which the initiator always makes losses in expectation—i.e., we consider values of η such that
y(p− 1− ησρ)− ζ

2ζ
2 > 0, as explained in Section 2. Indeed

y(p− 1− ησρ)− ζ

2
z2 = Υ(η)− φ2(λϕ− 1)2u2(η)

2ζ
> 0

is the term in parenthesis in equation (44). Thus, the rate of creative destruction Ψv decreases
with η, as reported in Proposition 2.

As the last step, we study the monotonicity of µ(η) = Ψv(η)
φvv(η) with respect to η. Differentiating

it with respect to η gives

µ′(η) =
Ψ′v(η)

φvv(η)
− Ψv(η)v′(η)

φvv2(η)
(45)

The first term is negative, as Ψ′v(η) < 0, as shown above. The second term is also negative, as
Ψv(η) > 0 and v′(η) > 0. The claim in Proposition 2 then follows.

A.1.3 Proof of Proposition 3

In Proposition 3, we assume that entrants only focus on horizontal innovation. In this case, the
value of entrants satisfies:

rW (q,M) = max
v,h

−qM
(
ηρWσW +

ζh
2
h2

)
+ φhh [X(q, ωM)−W (q,M)]

+ φz [W (λq, ϕM)−W (q,M)−K(λϕ− 1)] + Ψ−h [W (q,M(1− ωδ))−W (q) +Kωδ] (46)

where the terms admit a similar interpretation to equation (19). Using the same scaling property
used in the full case and differentiating with respect to h gives the expression for the optimal
innovation rate reported in equation (22). Plugging this expression back into the HJB gives and
imposing the free-entry condition w = κ gives:

rw = −ηρWσW +
φ2
h

2ζh
[ωx− w]2 . (47)

Solving this equation with respect to x gives equation (32). By substituting x into (22) then gives
the expression for h(η) reported in Proposition 3.

In this case, differently from the full case, the initiator is not subject to creative destruction
Ψv. Thus, the value of the initiator satisfies:

φ2

2ζ
(λϕ− 1)2 u2 − (r + Ψhωδ)u+ Υ(η) = 0. (48)

In this case, the exploiters face the threat of exit only due to the initiator’s breakthroughs (i.e.,
they are not subject to creative destruction due to the entrants’ innovations). Thus, the value of
the exploiters satisfies the following equation:

rx =
βω

1− ωδ

(
1− β

1 + σXρη

) 1
β
−1

Γ
1
β − φz (1− αX)x−Ψhωδx. (49)
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Now, recall that Ψh = µφvh, where h satisfies the equation reported in Proposition 3. As a result,
we can find v and µ by solving the system of equations (48)-(49) and, thus, the optimal innovation
rate of initiators z as well as the rate of horizontal displacement Ψh.

A.2 Proof of the results in Section 4

A.2.1 Derivation of firm values and optimal investment rates

In the two-state model, all value functions and the endogenous quantities are a function of
(ηj , ηj−)—i.e., of the market risk prices in the two states. For the ease of exposition throughout
this appendix, we omit these arguments.

Consider first the value of the initiator. Following standard arguments, the initiator’s scaled
HJB equation in each state j satisfies:

ruj = max
zj ,yj

Γjy
1−β
j −yj−

z2
j

2
ζ−σηjρyj+φzj [λ− 1]uj−Ψvjuj(1−α)−Ψhjujωδ+πj [uj− − uj ] (50)

where πj = π̃je
θj is the transition intensity under the risk-neutral measure. The last term on the

right-hand side captures the effect of a state switch, in which case firm value goes from uj to uj−.
Differentiating the above equation with respect to yj gives the optimal production quantity and
selling price in each state:

yj =

(
Γj(1− β)

1 + σηjρ

) 1
β

⇒ pj = Γjy
−β
j =

1 + σηjρ

1− β
.

Similarly, differentiating equation (50) with respect to zj gives the optimal innovation rate in each
state:

zj =
φ

ζ
(λϕ− 1)uj .

Plugging back the expressions for zj and yj into equation (50) gives the valuation equation of the
initiator.

Consider now the dynamics of the exploiters. Following arguments similar to those in Section
3, their scaled value satisfies the following equation:

rxj = max
yXj≥0

ω

1− ωδ
yXj (pXj − 1− ηjρσX)− (φzj + Ψvj) (1− αX)xj − ωδΨhjxj + πj [xj− − xj ] ,

(51)

where the last term on the right-hand side captures the effect of a state switch, in which case firm
value goes from xj to xj−. Maximizing the above equation with respect to yXj gives the optimal
production rate in each state:

yXj =

(
Γj(1− β)

1 + ηjρσX

) 1
β

which we plug back into equation (51) to get the valuation equation of the exploiter.
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Finally, the scaled entrant value satisfy the following equation:

rwj = max
vj ,hj

− ηjρWσW −
ζv
2
v2
j −

ζh
2
h2
j + φvvj [Λuj − wj ] + φhhj [ωxj − wj ] (52)

+ φzj (λϕ− 1) (wj − κ) + Ψ−vj (Λ− 1) (w − κ)−Ψ−hj(wj − κ)ωδ + πj [wj− − wj ] .

The terms in this equation admit an interpretation similar to equation (20), and the last term on
the right-hand side captures the effect of a state switch. In each state, the optimal rate of vertical
innovation satisfies:

vj =
φv
ζv

[Λuj − wj ] , (53)

whereas the optimal rate of horizontal innovation satisfies:

hj =
φh
ζh

[ωxj − wj ] . (54)

We plug back these expressions into equation (52) to obtain the valuation equation for the entrants.
In each state, the rate of creative destruction and the rate of horizontal displacement satisfy

Ψvj = µjφvvj and Ψhj = µjφhhj , and the free-entry condition wj = κ holds.

A.2.2 Proof of Proposition 4

Vertical innovation Following steps similar to those in Appendix A.1.2, it is possible to show
that the initiator value in each state j satisfy:

uj =
κ

Λ
+

1

Λ

√
2ζv(rκ+ ηjρWσW )

φ2
v

. (55)

As, realistically, we assume that ηB > ηG, then the value of the imitator is greater in state B.
Using (55) into the expressions of zj and dj gives

zj =
φ(λ− 1)

ζ

[
κ

Λ
+

1

Λ

√
2ζv(rκ+ ηjρWσW )

φ2
v

]
(56)

as well as the optimal (vertical) innovation rate of active entrants:

vj =
φv
ζv

√
2ζv(rκ+ ηjρWσW )

φ2
v

=

√
2(rκ+ ηjρWσW )

ζv
. (57)

Hence, the first part of the claim in Proposition 4 follows.
Consider now the the rate of creative destruction. In the two states, it satisfies:

Ψvj(ηj , ηj−) =
1

1− α

(
φ2

2ζ
uj (λϕ− 1)2 − r +

Υ(ηj)

uj
+ πj

(uj− − uj)
uj

)
(58)

Let us start by considering the case in which Γj does not vary across states—i.e., ΓG = ΓB ≡ Γ.
Now, express ηB = ηG+∆, with ∆ ≥ 0. If ∆ = 0, ηB = ηG, and we are back to the one-state case,
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meaning that ΨvB = ΨvG—basically, there is no variation across the two states. Conversely, when
∆ > 0, ΨvB 6= ΨvG. To study the relative magnitude of creative destruction in the two states,
we next define the function F (∆) = ΨvB(∆) − ΨvG(∆) for ∆ ≥ 0. As just discussed, F (0) = 0
holds. Using equation (58), we study F ′(∆). Let us also express uB and uG as a function of ∆.
By calculations, we find that

F ′(∆) =− ρσ

(1− α)uB

(
Γ(1− β)

1 + (ηG + ∆)ρσ

) 1
β

−
u′B

(1− α)

(
πG
uG

+
πBuG
u2
B

)
−

[
β

(
(1− β)

1 + (ηG + ∆)ρσ

) 1
β
−1

Γ
1
β −

φ2(λϕ− 1)2u2
B

2ζ

]
u′B(∆)

(1− α)u2
B

with u′B(∆) = ζvρW σW
Λφv
√

2ζv [rκ+(ηG+∆)ρW σW ]
> 0. The term

[
β
(

(1−β)
1+(ηG+∆)ρσ

) 1
β
−1

Γ
1
β − φ2(λϕ−1)2u2B

2ζ

]
is

positive under our assumption that the initiator’s expected net cash flow is positive. As a result,
all the terms in F ′(∆) are negative. Thus, the function F is zero at ∆ = 0 and decreases for
∆ > 0, meaning that ΨvB(∆) < ΨvG(∆) if ηB > ηG. That is, the rate of creative destruction is
procyclical.

Consider now the case ΓG > ΓB. If ∆ = 0, then uB = uG, zB = zG, and vB = vG, as these
quantities do not depend on Γj (see equations (55), (56), and (57)). Consider again the function
F (∆) defined above. Let us first evaluate this function for ∆ = 0. Using equation (58), we have

that F (0) = 1
(1−α)uB(0)β

(
(1−β)

1+ηGρσ

) 1
β
−1
(

Γ
1
β

B − Γ
1
β

G

)
, where we have used that uB(0) = uG(0).

As ΓG > ΓB by assumption, then F (0) < 0. As F ′(∆) < 0 following the steps above, then
ΨvB(∆) < ΨvG(∆) for the case ΓG > ΓB too.

Recall that Ψvj = µvjφvvj . As shown above, ΨvB − ΨvG < 0 and vB > vG. Thus, for
ΨvB −ΨvG = φv [µBvB − µvGvG] < 0 to hold, it must be that µB < µG. Thus, the mass of active
entrants is also procyclical. Moreover, using the expression for vj gives:

ΨvB −ΨvG =φv

[
µB

√
2(rκ+ (ηG + ∆)ρWσW )

ζv
− µG

√
2(rκ+ ηGρWσW )

ζv

]
(59)

Note that the first square root is greater than the second, so we express
√

2(rκ+(ηG+∆)ρW σW )
ζv

=

A
√

2(rκ+ηGρW σW )
ζv

, with A > 1. Moreover, as noticed above, µB < µG, so we can express µG =

BµB, with B > 1. Then, we have

ΨvB −ΨvG =φvµB

√
2(rκ+ ηGρWσW )

ζv
[A−B] . (60)

As ΨvB−ΨvG < 0, then it must be that A < B, meaning that the mass of active entrants µj (the
extensive margin) varies more than vj (the intensive margin) for a given variation in ∆.

Horizontal innovation Consider now the case in which entrants pursue horizontal innovation
only. Following steps similar to those in Appendix A.1.3, it is possible to solve for xj from the
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entrants’ HJB equation simply by solving for the optimal h investment and imposing the free
entry condition. We get

xj =
κ

ω
+

1

ω

√
2ζh(rκ+ ηjρWσW )

φ2
h

. (61)

Using this expression into hj gives

hj =

√
2(rκ+ ηjρWσW )

ζh
. (62)

Because ηB > ηG, then hB > hG. The claims in Proposition 4 then follow.

A.3 Proof of the results in Section 5

A.3.1 Proof of Proposition 5

We consider the definition of the risk premium of the initiator, RU,j , as shown in equation (35).
Using the expression for uj derived in equation (55), the derivative of RU,j with respect to φv is
thus given by:

∂RU,j
∂φv

=
ηjΛρσyj

√
2ζv(ηjρWσW + κr)(

κφv +
√

2ζv(ηjρWσW + κr)
)2 +

κ
√

2ζv
(√

(η−jρWσW + κr)−
√

(ηjρWσW + κr)
)(

eθj − 1
)−1

π̃−1
j

(
κφv +

√
2ζv(ηjρWσW + κr)

)2 ,

where the first term is strictly positive for any parameter value, and the second term is also
positive in both states. In the good state, the numerator of the second term is positive given
ηB > ηG, whereas eθG − 1 > 0 in the denominator. In the bad state, the numerator is negative
given ηB > ηG, whereas eθB − 1 < 0 in the denominator. It follows that RU,j is increasing in φh.

Next we calculate the derivative of RU,j with respect to Λ:

∂RU,j
∂Λ

=
ηjφvρσyj(

κφv +
√

2ζv(ηjρWσW + κr)
) ,

which is strictly positive for any parameter value. It follows that RU,j is increasing in Λ.
Consider next the risk premium of the exploiter, RX,j defined in equation (36). Using the

expression for xj in equation (61), we obtain:

∂RX,j
∂φh

=

√
2κπ̃j

(√
ζh(ηjρWσW + κr)−

√
ζh(η−jρWσW + κr)

)(
1− eθj

)−1 (
κφh +

√
2
√
ζh(ηjρWσW + κr)

)2 +
ηj
√

2ζh(rκ+ ηjρWσW )

(ρXσXyXj)
−1 x2

j (1− δω)φ2
h

,

which is strictly positive for any parameter value, given ηB > ηG, eθG − 1 > 0 and eθB − 1 < 0. It
follows that RX,j is increasing in φh as stated in Proposition (5).

We next consider the derivative of RX,j with respect to ω:

∂RU,j
∂ω

=
ηjρσXyX,j

(
κφh +

√
2ζh(ηjρWσW + κr)

)
x2
jω(1− ωδ)2φh

+
ηjρσXyX,j
xj(1− ωδ)

,
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which is strictly positive, proving that RX,j is increasing in ω. Similarly, the derivative of RX,j
with respect to δ equals:

∂RU,j
∂δ

=
ηjρσXω

3yX,jφh

(1− δω)2
(
κφh +

√
2ζh(ηjρWσW + κr)

) ,
which is strictly positive, proving that RX,j is increasing in δ. Proposition (5) then follows.
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Table 1: Baseline parameters.

Parameter Description Value

r Risk-free rate 0.01

η Market price of risk (one state) 0.30

φ Poisson coefficient (initiator) 1.00

φv Poisson coefficient (entrant, vertical) 1.00

φh Poisson coefficient (entrant, horizontal) 1.00

ζ R&D cost coefficient (initiator) 0.60

ζv R&D cost coefficient (entrant, vertical) 6.00

ζh R&D cost coefficient (entrant, horizontal) 0.08

λ Vertical jump (initiator) 1.055

Λ Vertical jump (entrants) 1.12

ϕ Horizontal jump (initiator) 1.14

ω Horizontal jump (entrants) 0.25

δ Obsolescence due to horizontal innovations 0.20

β Inverse of price elasticity of demand 0.13

Γ Demand shift parameter 1.00

α Recovery in liquidation (initiator) 0.60

αX Recovery in liquidation (exploiter) 0.85

σ Coefficient of cash flow volatility (initiator) 0.80

σX Coefficient of cash flow volatility (exploiter) 0.70

σW Cash flow volatility (entrant) 0.20

ρ Correlation with aggregate shocks (initiator and exploiter) 0.55

ρW Correlation with aggregate shocks (entrant) 0.20

κ Entry cost 0.015
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Table 2: Innovation in the vertical and horizontal dimension. This table reports
the model endogenous quantities for the corner case in which entrants invest in vertical
innovation only, for the corner case in which entrants invest in horizontal innovation only,
and in the full case featuring both vertical and horizontal innovation. The top panel
illustrates the case in which ω = 0.25 (as in the baseline parameterization), whereas the
bottom panel illustrates the case in which ω is higher and equal to 0.45.

Vertical Horizontal Full case
only only (both)

ω = 0.25 (Baseline)

z 0.120 – 0.116
v 0.064 – 0.062
h – – 0.141
µ 2.559 – 2.112
Ψv 0.163 – 0.130
Ψh – – 0.297

ω = 0.45

z 0.120 0.248 0.071
v 0.064 – 0.037
h – 0.551 0.451
µ 2.559 0.918 1.881
Ψv 0.163 – 0.069
Ψh – 0.506 0.849
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Table 3: Equilibrium quantities. This table reports the quantities of interest for the
case in which the market price of risk varies over time (first to third column) as well as
when assuming that there is just one state of the economy in which the market price of risk
is fixed at its two-state average. In the top panel, we assume that only the market price of
risk ηj varies across the different states; in the bottom panel, we assume that the demand
shift parameter Γj varies too.

State G State B Average One-state
(two states)

Varying ηi only

z 0.112 0.128 0.116 0.116
v 0.060 0.068 0.062 0.062
h 0.134 0.151 0.138 0.141
µ 2.873 0.170 2.260 2.107
Ψv 0.171 0.012 0.135 0.130
Ψh 0.385 0.026 0.304 0.296
I 0.283 0.140 0.251 0.246

Varying ηi and Γi

z 0.112 0.128 0.115 0.115
v 0.059 0.068 0.061 0.061
h 0.147 0.164 0.151 0.154
µ 3.224 0.160 2.529 2.341
Ψv 0.191 0.011 0.150 0.143
Ψh 0.475 0.026 0.373 0.360
I 0.302 0.139 0.265 0.258
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