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From Man vs. Machine to Man + Machine:
The Art and AI of Stock Analyses

ABSTRACT

An AI analyst we build to digest corporate financial information, qualitative disclosure, and

macroeconomic indicators is able to beat the majority of human analysts in stock price

forecasts and generate excess returns compared to following human analysts. In the contest

of “man vs machine,” the relative advantage of the AI Analyst is stronger when the firm is

complex, and when information is high-dimensional, transparent and voluminous. Human

analysts remain competitive when critical information requires institutional knowledge (such

as the nature of intangible assets). The edge of the AI over human analysts declines over

time when analysts gain access to alternative data and to in-house AI resources. Combining

AI’s computational power and the human art of understanding soft information produces the

highest potential in generating accurate forecasts. Our paper portraits a future of “machine

plus human” (instead of human displacement) in high-skill professions.

Key Words: Artificial Intelligence; Machine Learning; FinTech; Stock Analyst; Alternative

Data; Disruptive Innovation



1. Introduction

Since its inception and as it rises, artificial intelligence (AI) constantly makes human

beings to rethink their own roles. While AI is meant to be intelligence augmentation for

humans, concerns abound that AI could replace human tasks and increasingly skilled ones,

and thus displace jobs by those currently performed by the better-paid and better-educated

workers (Muro, Maxim, and Whiton, 2019). Such a concern and the associated debates have

motivated a quickly growing literature. Recent work by Webb (2020), Acemoglu, Autor,

Hazell, and Restrepo (2020), Babina, Fedyk, He, and Hodson (2020), and Jiang, Tang, Xiao,

and Yao (2021) have all conducted large-sample analyses on the extent of job exposure

and vulnerability to AI-related technology as well as the consequences on employment and

productivity.

The existing literature has been mostly focusing on characterizing the type of jobs that

are vulnerable to disruption by, as well as those that could be created due to, AI evolution.

In other words, the sentiment of the existent studies mostly involves a theme of “man-

versus-machine,” i.e., to characterize the contest between human and AI, to explore ways

human adapts, and to predict the resulting job redeployment. In such settings, human

beings are often rendered passive or reactive – dealing with disruptions and looking for new

opportunities defined by the AI landscape. There has been relatively little research devoted

to prescribing how skilled human workers could tap into a higher potential with enhancement

from AI technology, presumably the primary goal for human beings to design and develop

AI in the first place. This study aims to connect the contest of “man-versus-machine” (“man

v. machine” hereafter) to a potential equilibrium of “man-plus-machine” (“man + machine”

hereafter).

Our study could be motivated by the experience of chess grand master Garry Kasparov.

The story that IBM’s Deep Blue beat the then reigning grand master Kasparov in 1997 was

well-known. Multiple contests repeated in a similar setting afterwards killed any remaining

suspense for the outcome of man v. machine in chess playing. What is far less known is that
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humans, despite having lost interest in man-versus-machine chess contests, have not lost

interest in either the game or the machine. In fact, the encounter with the Deep Blue was a

catalyst for people like Kasparov to pioneer the concept of man + machine matches, in which

a chess player equipped with AI assistance (a “centaur” player) competes against AI. Up to

today the centaur keeps an upper hand against machines; and even more encouragingly, there

have been more and better human chess players with the advent of affordable AI-engineered

chess programs.1

If AI can help more humans become better chess players, it stands to reason that it

can help more of us become better at many skilled jobs, from pilots, medical doctors, to

investment advisors. In this study, we zoom into the profession of stock analysis, whose data

availability allows us to calibrate both man vs. machine and man + machine. Stock analysts

are among the most important information intermediaries in the market place (e.g., Brav and

Lehavy, 2003; Jegadeesh, Kim, Krische, and Lee, 2005; Crane and Crotty, 2020). Their job,

which require both institutional knowledge and data analytics, has not been spared by AI as

making powerful and fast predictions at a relatively low cost is at the heart of AI (Agrawal,

Gans and Goldfarb, 2018), and more and more investors start to heed to recommendations

about stock picking and portfolio formation made by AI-powered tools.2

To trace out the path from “man v. machine” to “man + machine,” we decided to

build our own AI model for year-end stock predictions so that we have a consistent and

time-adapted benchmark for AI performance which we understand and are able to explain.3

Target prices and earnings are the two primary subjects of analyst forecasts, we choose the

former as the latter are subject to managerial discretion, which a large body of accounting

literature on earnings management manifests. Our “AI analyst” is built on training a com-

1Source of information: The Inevitable, by Keven Kelly, Penguin Publishing Group, 2016. See also
“Defeated Chess Champ Garry Kasparov Has Made Peace With AI,” Wired, February 2020.

2Sources: “What Machine Learning Will Mean for Asset Managers,” Robert C. Pozen and Jonathan
Ruane, Havard Business Review, December 3, 2019. “How Startup Investors Can Utilize AI To Make
Smarter Investments,” Jia Wertz, Forbes, January 18, 2019.

3We focus on year-end prices because these are a typical focal point for investors and corporations for
tax and reporting reasons. For example, “Credit Suisse Raised Its SP 500 Target – Earnings Are Too Good
to Ignore,” Jacob Sonenshine, Barron’s, April 30, 2021.
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bination of current machine-learning (ML) tool kits4 using timely publicly available data

and information. More specifically, we collect firm-level, industry-level, and macro-economic

variables, as well as textual information from firms’ disclosure (updated to right before the

time of an analyst forecast) as inputs or predictors, but deliberately exclude information

from analyst forecasts (past and current) themselves. We resort to machine learning models,

instead of traditional economics models (such as regressions) due to the advantages to the

former in managing high dimensional unstructured data, and in their flexibility in optimizing

and fitting unspecified functional forms. More recent development in the area also allows us

to mitigate over-fitting and to improve out-of-sample performance.

We kept training and improving the model until we were confident that our AI analyst

is able to beat human analysts as a whole: The AI analyst based on the final “ensemble”

model outperforms 53.7% of the target price predictions made by all IBES analysts during

the sample period of 2001-2016.5 Moreover, a monthly rebalanced long-short portfolio based

on the differences in the opinions of AI and human analysts6 is able to generate a monthly

alpha of 0.84% to 0.92% using the Fama-French-Carhart four-factor model. Though building

an AI analyst is not the ultimate goal of this study and though we do not claim our AI analyst

to be the best of the kind, its performance already suggests that the profession of financial

analysts is subject to technology disruption as our model is a lower bound of the state-of-

the-art. To the extent that we have, at our disposal, an AI analyst that beats the average

of its human counterparts, we are able to explore the relative advantages of, and potential

synergies between, the two sides.

First, we examine the circumstances under which human analysts retain their advantage,

in that a forecast made by an analyst beats the concurrent AI forecast in terms of lower

4We start with two versatile quasi-linear ML models, Elastic-Net and Support Vector Regressions, that
are adept at tasks with a large number of variables. We then add on three highly nonlinear ML models,
Random Forest, Gradient Boosting, and Long Short-Term Memory (LSTM) Neural Networks. Random
Forest and Gradient Boosting can both capture complex and hierarchical interactions among the input
variables while the LSTM model is designed to model time-series patterns in the data.

5In comparison, the predictions by an OLS model only outperform 19.3% of analyst forecasts.
6Such a portfolio would long a stock if the AI forecasts a higher target price than the median analyst

forecast over a time horizon and short a stock if otherwise.
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absolute forecast error relative to the ex post realization (i.e., the actual year-end stock

price). We find human analysts perform better for more illiquid, smaller firms, and firm

with asset-light business models (i.e., higher intangible assets), consistent with the notion

that such firms are subject to higher information asymmetry and require better institutional

knowledge or industry experience to decipher. Analysts affiliated with large brokerage houses

also stand a higher chance of beating the machine, a combination of their abilities and the

research resources available to them. Moreover, analysts are more likely to have the upper-

hand when the associated industry is experiencing distress, suggesting that the AI has yet

to catch up on relatively infrequent changes such as an industry recession. This is consistent

with the limitation of current machine learning and AI models which lack reasoning functions

and thus cannot learn effectively from infrequent events.7 As expected, AI enjoys a clear

advantage in its capacity to process information, and is more likely to out-smart analysts

when the volume of public information is larger.

Just like the “centaur” chess player which Kasparov pioneered, the superior performance

of an AI analyst does not rule out the value of human inputs. If human and machine have

relative advantage in information processing and decision making, then human analysts may

still contribute critically to a “centaur” analyst, i.e., an analyst who makes forecasts that

combine their own knowledge and the outputs/recommendations from AI models. After we

add analyst forecasts to the information set of the machine learning models underlying our AI

analyst, the resulting “man + machine” model outperforms 57.3% of the forecasts made by

analysts, and outperforms the AI-only model in all years. Thus, AI analyst does not displace

human analysts yet; and in fact an investor or analyst who combines AI’s computational

power and the human art of understanding soft information can attain the best performance.

We are thus interested in knowing when the incremental value of human to a man +

machine model is the highest, as manifested in the relative performance of the man + machine

model versus the pure AI model. Similar to previous findings, we find inputs from analysts

7Source: “What AI still can’t do,” Brian Bergstein, MIT Technology Review, February 19, 2020
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are more valuable when covering firms that are more illiquid and firms with more tangible

assets. Moreover, analyst inputs have more incremental value in long-horizon forecasts, and

during the time period an industry is experiencing difficulty. Importantly, the incremental

value of human does not decrease as the volume of information (hence demand for processing

capacity) increases, though this constitutes a human disadvantage when alone. Similarly,

analysts from small brokerage houses make similar level of contribution to the man + machine

model compared to their counterparts from larger banks, suggesting that AI could potentially

help level the disparity in institutional resources.

Finally, we resort to an event study to sharpen the inference of the impact of integrating

man and machine in stock analyses. In recent years, the infrastructure of “big data” has cre-

ated a new class of information about companies that is collected and published outside of the

firms, and such information provides unique and timely clues into investment opportunities.

An important and popular type of alternative data captures “consumer footprints,” often

times in the literal sense such as satellite images on retail parking lots. Such data, which have

to be processed by machine learning models, have been shown to contain incremental infor-

mation for stock prices (Zhu, 2019; Katona, Painter, Patatoukas, and Zeng, 2020). We build

on data from Katona, Painter, Patatoukas, and Zeng (2020) on the staggered introduction

of several important alternative data bases, and conduct a difference-in-differences test of

analysts’ performance versus our own AI model before and after the availability of the alter-

native data. The underlying premise is that analysts who cover firms that are served by the

alternative data could be in the situation of man + machine, as they have the opportunity

to use the additional, AI-processed, information. Indeed, we find that post alternative data,

analysts covering affected firms improve their performance relative to the AI-only forecast

model we build. Furthermore, such improvement concentrates in the subset of analysts who

are affiliated with brokerage firms with strong AI capabilities, measured by AI-related hiring
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using the Burning Glass U.S. job posting data8 and the classification algorithm developed

in Babina, Fedyk, He, and Hodson (2020).

Overall, results support the hypothesis that analyst capabilities could be augmented

by AI, and moreover, analysts’ work possesses incremental value such that they, with the

assistance of AI, can still beat a machine model without human inputs, analogous to the

centaur chess players’ out-performing machines as we discussed earlier. If there is some

external validity from chess and stock analysis to skilled workers in general, the inference

from our study is encouraging news for humans in the age of AI.

Our work is related to the rapidly growing literature on the competition and threat to

human workers posed by new technology including robots and AI.9 The literature overall

finds that when low- or intermediate-skill jobs are replaced by machines, humans tend to

move to high-skill jobs that are more difficult to replace (Autor, Levy, and Murnane, 2003).

However, the most recent wave of AI innovations disrupt many of the high-skill jobs. Our

study focuses on humans’ relative advantage over machines and, more importantly, the

potential synergies between humans and machines.10 We envision a future in which AI and

machines can assist humans with the more tedious and quantitative tasks and democratize

access to information, allowing humans to be more creative and productive.11

A few contemporaneous papers also study the impact of big data and AI in the financial

industry. Abis (2020) studies how quantitative investment strategies influence mutual fund

8Burning Glass is currently the leading data vendor in job postings in the U.S. The postings are scraped
from web sites, news letters, and agency reports, and cover the period of 2007, and then 2010-2019. Acemoglu,
Autor, Hazell, and Restrepo (2020) show that Burning Glass data cover 60-80% of all U.S. job vacancies.

9An incomplete list of recent papers include Aghion, Jones and Jones (2017), Acemoglu and Restrepo
(2018), Acemoglu and Restrepo (2019), Brynjolfsson, Mitchell and Rock (2018), Webb (2020), Ray and
Mookherjee (2020), Cao, Cong, and Yang (2019), Acemoglu, Autor, Hazell, and Restrepo (2020), and Jiang,
Tang, Xiao, and Yao (2021).

10An example in a non-finance setting comes from Sports. After trying Video Assistant Referee (VAR)
for a few seasons, the English Premier League decided not to let VAR over-power referee judgment. One
main reason is that players will reverse-engineer the rules underlying the VAR decisions and play to their
advantage, such as committing more “low-trade” (to the machine) but atrocious (to humans) fouls. This
can be remedied by having a human referee having the final say. See “Why Has The Introduction Of Video
Technology Gone So Badly In Soccer?” James Reade, Forbes, December 10, 2020.

11Due to the complementary nature of AI and humans, the advent of AI technologies can potentially
create more jobs than they destroy. See “Artificial Intelligence To Create 58 Million New Jobs By 2022, Says
Report,” Amit Chowdry, Forbes, September 18, 2018.
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performance. Abis and Veldkamp (2020) examine the change in labor shares in the financial

industry driven by the new data management and AI jobs. Coleman, Merkley, and Pacelli

(2020) compare the performance of robot analysts from FinTech companies with human

analysts. Grennan and Michaely (2020) study how analysts perform and adjust in response

to the advent of AI-processed recommendations in the markets. Rossi and Utkus (2021)

compare human asset managers with robot advisors. Agrawal, Gans and Goldfarb (2019, 2)

discuss the ambiguous impact of AI on labor given the elements in AI aiming at automating

decisions versus enhancing human decisions. Our paper differs from the existent literature

in that we are able to explore the internal mechanism of machines we constructed ourselves,

and to identify its relative advantages to humans more directly. More importantly, our set-up

allows us to integrate human and machines so that we are able to investigate the incremental

value of humans relative to machines in such a cooperation.12

Finally, we contribute to the literature of building and assessing the performance of ma-

chine learning models in financial applications, e.g., in predicting asset prices (Gu, Kelly, and

Xiu, 2020), robo-advising (D’Acunto, Prabhala, and Rossi (2019)), portfolio management

(Chen, Pelger, and Zhu, 2020; Cong, Tang, Wang, and Zhang, 2020), estimating values of

artwork (Aubry, Kraeussl, Manso, and Spaenjers, 2020), earnings forecast (van Binsbergen,

Han, and Lopez-Lira, 2020; Cao and You, 2021), lending decisions (Liu, 2019), innovation

evaluation (Zheng, 2021) and estimating bank risk (Hanley and Hoberg, 2019). While we

also employ machine learning models to build our AI analyst, we focus more on understand-

ing the difference between humans and machines, and the complementary value humans can

offer in the age of AI. Our study is one of the first to study the implications of the combi-

nation of humans and machines in the financial markets.13 Given the increasing presence of

machines and AI, understanding how they can best complement and improve humans will

12To make sure our AI model is consistent with those in industry practice, we communicated with invest-
ment companies who also develop AI analyst models and found that they reached many similar conclusions
regarding the incremental value of human to AI.

13Armour, Parnham, and Sato (2020) study the impact of AI and the associated digital technologies on
the law profession. They find that AI-enabled services will augment the capabilities of human lawyers and
also generate new roles for legal experts to produce such services.
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bring to fruition the original mission of AI development.14

2. Information Sources, Data Construction, and Machine Learning

Models

2.1. Sample of forecasts

Our sample of analyst target price forecasts builds on the Thomson Financial I/B/E/S

analyst database, over the period from 1996 to 2016.15 After merging I/B/E/S with CRSP

and Compustat, the final sample consists of 685,888 analyst target price forecasts on 6,118

firms, issued by 10,287 analysts from 755 brokerage firms.

We choose to analyze analysts’ price forecasts instead of earning forecasts because earn-

ings are subject to managerial discretion or even manipulation. Earnings could be endoge-

nous to analyst forecasts due to the well-documented feedback loop due to managerial in-

centive to meet and beat analyst consensus (Abarbanell and Lehavy, 2003; Doyle, Jennings,

and Soliman, 2013). Prices are more difficult to control by insiders and thus provide a more

objective benchmark to assess performance of human analysts and machines.

2.2. Building the information set for AI analyst

Given our goal to build an AI analyst to compete with professional analysts, we need to

define the information set available to such a professional whenever a price forecast is made.

The unit of analysis in our main set up is a forecast on the year-end stock price for firm i

by (human) analyst k on date t (in year u). We focus on year-end prices because these are

a focal point for performance evaluation, tax, and corporate reporting purposes. The infor-

mation set, It, would, in an ideal setting, include all publicly available data and information

14This echoes the mission of the Stanford Human-Centered AI Institute, “to advance AI research, educa-
tion, policy and practice to improve the human condition.” See https://hai.stanford.edu/about.

15The I/B/E/S coverage prior to 1996 was limited, with fewer than 2,000 in total of target price forecasts.
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up to t−. We assume that professional analysts do not have access to material non-public

information, which is essentially the requirement of Regulation FD.16 We approximate It

with firm and industry information from CRSP and Compustat, textual information from

firms’ SEC Filings, including annual reports (10-K), quarterly reports (10-Q), ad hoc dis-

closure of material corporate news and developments (8-K), and other reports, as well as

macroeconomic data from the Federal Reserve Economic Data at Fed at St. Louis.

To operationalize time adaptation, we adopt the following rolling-window approach. For

a given forecast made by a (human) analyst on date t in year u, all forecasts in the previous

five years u−5, u−4, . . . , u−1 form the training sample. That is, inputs data up to the dates

of those forecasts (but excluding the forecasts themselves) and the corresponding realized

prices were used to train our machine learning models. Move to the estimation sample, we

then feed inputs data available up to date t− 1 in year u into the trained model to make the

prediction at time t for the year-end price. Because our sample starts in 1996, our AI Analyst

makes its first prediction in 2001 given the requirement of five years as the training period.

Though we allow (public) information to be updated till t−1, most of the information inputs

came from disclosed quarterly data from the previous eight quarters.17

2.3. Information and variables as inputs to machine learning

Firm Characteristics The firm characteristics fed into machine learning models are re-

trieved or processed based on information from standard databases accessed via WRDS,

especially CRSP/Compustat and Thomson Reuters Ownership Databases. The first set of

predictors include annual returns and end-of-year stock prices for the past five years, as well

as the realized earnings within the past 3, 6, 9, 12, 24 and 36 months. We also include

a number of firm characteristics known to predict cross-sectional differences of the stock

16Regulation FD (“fair disclosure”), implemented in 2000, generally prohibits public companies from
disclosing previously nonpublic, material information to certain parties unless the information is distributed
to the public first or simultaneously.

17Data that come in different frequencies, e.g., corporate news releases (8-K), are aggregated at the
quarterly level.
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prices. In particular, we include anomalies from each of the six broad categories of anoma-

lies considered in Hou, Xue, and Zhang (2020), i.e., the momentum, value versus growth,

investment, profitability, intangibles, and trading frictions categories.18 Variables in this

group are constructed quarterly using information available at the previous quarter-end.

Industry Variables We compose a set of industry-level variables that capture competi-

tion, industry dynamics, and other factors relevant for firm valuation based on the existent

literature. The set of variables include the following: (i) The competition measure from

10K following Li, Lundholm, and Minnis (2013), which captures the degree of competition

resulting from rivalry within and across industries as perceived by the management; (ii)

the product market fluidity measure following Hoberg, Phillips and Prabhala (2014), which

quantifies product market poaching threat posed by the movement of competitors toward

the focal firm; (iii) industry affiliation with the Fama-French 48 industries (48 indicator vari-

ables); (iv) industry size, measured by the number of firms in the Fama-French 48 industry,

within the past 3, 6, 9, 12, 24 and 36 months; and (v) equally-weighted industry average

earnings per share realized within the past 3, 6, 9, 12, 24 and 36 months.

Macro Variables Macro-economic and stock market development are common factors

to all firms’ valuation and returns (e.g., Fama and French, 1989; Chen, Roll, and Ross,

1986). For this category we include the following variables: (i) Industrial Production Index;

(ii) Consumer Price Index; (iii) Crude oil price (WTI); (iv) three-month treasury bill rate;

(v) ten-Year treasury constant-maturity rate; and (vi) The BAA-AAA yield spread. These

macro variables are obtained from the Federal Reserve Economic Data at Federal Reserve

St. Louis on a monthly frequency.

Textual Sentiment Information One leading strength of machine over human being is

the former’s ability to digest large volume of information. One new edge that machine learn-

18We list all variables serving as inputs into the machine learning models, their definitions, and sources
in Table A1 in Appendix A.
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ing models boast over traditional statistical methods is its capacity to process unstructured

textual data based on firms’ SEC Filings, including annual report (10-K), quarterly report

(10-Q), corporate news (8-K), and other reports. The new developments allow researchers

to quantify information which was considered qualitative or “soft," commonly termed “sen-

timents.”

Two different sets of sentiment variables from textual data serve as inputs to our AI

analyst. The first set of sentiment variables is based on the Loughran and McDonald (2011)

sentiment, which has been widely used in the academic literature. We calculate the fre-

quency of positive and negative sentiment words from the firm-issued SEC filings follow-

ing Loughran and McDonald (2011). The second set of machine-learning-based sentiment

variables follow Cao, Kim, Wang, and Xiao (2020), where a deep-learning neural network

model to incorporate contextual information and syntactic relations between words that are

performance-related. The second approach aims to isolate managerial sentiment related to

the firm’s future performance from sentiment regarding other issues (such as location and

weather).

2.4. Potential factors for the relative performance of AI and human analysts

A main objective of the study is to assess the factors that contribute to the relative

performance of AI vs. human, as well as the synergy between the two. We hypothesize that

these factors are related to the information environment of the firm, industry, and analysts.

We first consider the following firm-level variables: the Amihud Illiquidity measure which

is the ratio of absolute daily stock return to the daily trading volume (in dollars); Stock

Volatility (the total return volatility); Log Market Cap (the logarithm of market capital-

ization); # 8K Reports, which is the number of 8K reports filed each year and represents

the volume of available information about the firm; and Intangible Assets, defined as the

average of three proxies: one minus the ratio of PP&E to assets, organization capital scaled

by assets, and knowledge capital scaled by assets. The last two measures, derived from the

11



accumulation of SG&A and R&D expenditures, are constructed following Ewens, Peters,

and Wang (2020).

We further include a number of variables that characterize the information environment

and resources for analysts: Forecast Horizon is the number of days from the forecast to

the year end; # Analysts in Brokerage Firm, is the number of analysts and proxies for the

size and resources of the brokerage firm; # Previous Predictions is the number of previous

predictions by all I/B/E/S analysts in the same firm-year on the firm-year; # Institutional

Owners is the total number of institutional owners; Industry Distress, which equals 1, if the

industry return is negative and Time Trend equals the number of years elapsed from the

beginning of the sample (2001). The final set of variables are related to analysts’ access to

alternative data and AI resources, which will be introduced in Section 5.2.

2.5. Machine Learning Models

We compare a number of machine learning models and obtain our main model as an

ensemble of the three best-performing models. The machine learning models are essential

tools but not the ultimate objectives of this study. For completeness we provide a brief

overview in Appendix B of the models we examined, which include: Elastic-Net, Support

Vector Machines, Random Forest, Gradient Boosting, and Long Short-Term Memory Neural

Networks. Moreover, the overview focuses on the economic intuition of each methodology’s

mechanism as well as strength. For further details, we refer the reader to the most represen-

tative references in this field, e.g., Hastie, Tibshirani and Friedman (2009) and Goodfellow,

Bengio, and Courville (2016).

3. Building and Performance of AI Analyst

Our ultimate goal is not to build an AI analyst per se, but instead is to analyze the

relative strength as well as synergy between machine and human. Such a goal, however, sets
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the premise that the AI analyst at our hand needs to be strong enough to compete with, or

even beat, human analysts. This section describes how we build an AI analyst that meets

the calibre.

3.1. The predictive models

For each stock i at time t, where t is the day when an analyst makes a forecast, FMan
i,j,t

(where i, j, t are indices for the stock, the analyst, and the date; and the superscript Man

indicates human as opposed to AI), of the year-end target price, our model makes an attempt

at predicting the same target, i.e., the stock price Pi,T (t), where T (t) is the last trading day

of the calendar year containing t. Included in the predictive information set is all public

information (as described in Section 2 and Appendix A) up to t−. We summarize the

prediction model as:

FAI
i,t = f(Xi,t−) + εit. (1)

In (1), stock price is expressed in natural logarithm in order to mitigate skewness.

Next we compare the AI forecast FAI
i,t and the analyst forecast FMan

i,j,t , in terms of their

accuracy relative to the ex post realized price Pi,T (t). AI beats human if |FAI
i,t − log(Pi,T (t))| <

|FMan
i,j,t − log(Pi,T (t))|, and vice versa. We define Beat to be an indicator variable for AI

winning. Moreover, we FAI
i,t > FMan

i,j,t to be a “buy” signal and “sell” otherwise. Figure 1

shows the relative performance of AI vs. Analyst forecasts over time.

[insert Figure 1 here]

Figure 1 shows that out of 652,659 forecasts made by analysts during 2001-2016, our

AI Analyst we build is able to beat 53.7% of them. The p-value for the percentage to be

drawn from a distribution with the neutral probability of half for this sample size is less than

0.01%. However, the AI advantage is volatile from year from year ranging from 37.8% in

2013 to 64.4% in 2011 with a negative drift, as shown by the trend-fitted line. We conjecture

(which will be tested) that the waning advantage of the AI analyst is precisely because
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human analysts increasingly have access to, and are assisted by improving technologies in

data collection, statistical packages, and machine learning tools.

To put the performance comparison in perspective and to illustrate progressive improve-

ment of the AI models, Table 2 compares various models, from the simple OLS model to

a variety of machine learning algorithms, in their ability to beat analyst forecasts. As the

starting line, the simple OLS model only beats analysts in 19.3% of the cases, suggesting that

analysts’ job is indispensable with the availability of standard statistics tools such as linear

regression models. The performance of quasi-linear machine learning models is better than

the plain OLS, at 23.3% (Elastic Net) and 27.2% (Support Vector Machines), respectively.

As explained in Appendix B, the quasi-linear models are better at identifying the most im-

portant factors among a large number of independent variables, or at dimension-reduction

tasks, resulting in better out-of-the-sample performance compared to the OLS. However,

the quasi-linear models are still decidedly inferior to the average analyst, suggesting that hu-

mans are capable of processing flexible (nonlinear) relations and interactions among different

informative signals better than quasi-linear and non-linear models.

[Insert Table 2 here]

We next apply the LSTM neural networks model, a model that is known for capturing

nonlinear and time-series dynamics (Chen, Pelger, and Zhu, 2020).19 The LSTM model

outperforms just about half, or 50.1%, of the analyst forecasts, indicating that the neural

network model is indeed helpful in capturing nonlinear patterns in our sample.

Finally, we progress to two other nonlinear machine-learning models that themselves are

ensemble models built on decision trees, the random forest model and gradient boost models

(see Appendix B for details). These two models are known to be especially proficient at

capturing complicated interactions of multiple independent variables. The random forest
19The LSTM model involves random factors in the optimization process; therefore, one run of LSTM

model cannot predict precisely given the randomness. To alleviate this concern, we form an ensemble LSTM
model that aggregates the results of 20 runs of the LSTM model by taking the mean prediction. We also
examine the ensemble methods using 10 runs and 60 runs and the performance of these models stays the
same.
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and gradient boost models perform better than 51.7% and 52.0% of analysts, respectively.

Given that the LSTM, random forest, and gradient boost models capture important but

different nonlinear and interactive patterns and features, we form another layer of ensemble

of these three models to obtain synergistic benefits of the three models. The resulting “AI

analyst” outperforms 53.7% of analysts.20

The progression of forecast accuracy demonstrated by Table 2 signifies the relentless

upgrading of AI technologies over time, to the point that AI reaches or even beats human

intelligence in one after another skilled task. Financial analysts are thus vulnerable, espe-

cially considering that our model, which already beats the average analyst, is a lower bound

of what state-of-art AI technology could accomplish.

3.2. AI vs. Analysts with Persistent Performance

Analysts are a large group with heterogeneous skill levels such that forecast performance

would to be persistent if skills are innate. Moreover, the market recognizes, at least par-

tially, the relatively more skilled analysts by responding more strongly to their forecasts or

recommendations (Mikhail, Walther, and Willies, 2007; Li, 2005). Thus, a higher hurdle is

for our AI analyst to beat the subset of skilled analysts. We assess the relative performance

withe respect to the higher hurdle with two tests. First, we sort all analysts into the top

and bottom halves based on their average prediction error (normalized by stock prices) over

the past one, two, three, four, and five years. We then track the percentage of their future

forecasts during the one year horizon that are beat by our AI analyst. In the second test,

we repeat the same procedure except selecting the analysts that are among top and bottom

quantiles in each of the past one, two, three, four and five years. Table 3 reports the results.

[Insert Table 3 here]

20Cao and You (2021) show that the non-linear machine-learning models can predict earnings more
accurately than their linear counterparts, and the ensemble models combine the strength of both linear and
non-linear models also in the context of stock price forecasts.
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Results in Table 3 show that the AI comfortably beats the analysts in the low skill

quantiles. It is basically neck-to-neck to the more successful analysts, and is almost even

with analysts (beat ratio of 49.2%) who demonstrated five years’ superior performance in

the recent past, which constitutes only 3.9% of all the analysts.

3.3. Performance of portfolio following AI Recommendations

Analysts make forecasts as a way to advise portfolio formation or turnover. The perfor-

mance of a portfolio following the analyst advice is a natural metric for analyst skill. For

the same reason, we can form portfolios based on the different opinions between the AI and

human analysts. The performance of the resulting portfolio is testament of their relative

proficiency.

In each month, we gather all predictions made by all analysts and the corresponding

AI forecasts in past 30, 60, 90 and 360 days. For each pair of predictions, if AI predicts a

higher (lower) price, it is considered as a buy (sell) signal. If analysts predicts a higher price.

During the given time horizon, the portfolio will long the stock if there are more buy than

sell signals; and short the stock otherwise. The portfolio is equal weighted. In a monthly-

(or six month-) rebalanced portfolio, we hold the position for one month (six months), or

till the signals reverse. The portfolio contains 400 to 1100 stocks with signals from past 30

days to 360 days, and long/short positions are roughly even.21

Table 4 Panel A reports the performance of the monthly rebalanced long-short portfolio,

in terms of average return and alpha estimated using Fama-French three factor, Carhart

four factor, Fama-French five factor and Fama-Fench six factor models. Panel B reports the

same statistics for the semi-annually rebalanced portfolio.

[Insert Table 4 here]

Results in Table 4 are highly encouraging in that AI is able to generate superior re-
21The average monthly turnover rate of the monthly-rebalanced portfolios ranges from 10% to 58%; and

that for the six-month rebalanced portfolio is 6% to 12%.
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turns/alpha, relative to analysts, on the order of 65 to 91 basis points monthly, significant at

less than the 5% levels in all cases. When we separately examine the long and short portions

of the portfolio, we discover that the superior returns are significant (all at the 1% level)

only on the long-side (for which the transaction costs are lower). Such an asymmetry could

be driven by the well-documented positive bias in analyst forecasts (Lim (2002)). While

AI forecasts contain no average directional bias, we confirm that the median analyst price

forecast in our sample contains a 5.2% positive bias In such a scenario, signals are not as

informative when analysts are more optimistic than the AI.22

3.4. Combined wisdom of Man and Machine

Results from the previous sections suggest that the analyst profession could be seriously

disrupted by AI technology. However, the superior performance of the AI Analyst does not

rule out the possibility that analyst forecasts contain information that is incremental to AI-

produced forecasts. In other words, if analysts are able to possess information that is not

picked up by the AI, then AI forecast is not sufficient for the analyst forecast, even though

analysts lose to AI in forecasting accuracy. An investor who combines the wisdom of both

should attain even better performance.

To assess the performance of combined power, we consider adding the analyst forecasts

to the information set to our machine learning model. That is, the information set It now

includes the analyst forecasts, Fi,j,t, made on the same firm i during the 90-day window

ending on date t. In particular, we obtain the consensus and mean square error of the

forecasts by analysts in the previous 90 days, and build a “Man + Machine” hybrid analyst.

We find that the hybrid analyst outperforms 57.3% of all human analysts, and 56.6% of the

AI-alone forecasts. Figure 2 plots the relative performance of the hybrid analyst against

human analysts in the time-series. We find that the hybrid analyst beats more than 50% of

22As Lim (2002) pointed out, analyst forecast bias is related to analyst and company characteristics as
analysts may trade off bias to improve management access and forecast accuracy. As such, simply “debiasing”
analyst forecasts lead to even worse performance.
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analysts for almost all years. Furthermore, the average performance of the hybrid analyst

vs. human analysts is now relatively stable over time with a slight decline. Thus, the hybrid

model continues to provide substantial benefits even in recent years.

[Insert Figure 2 here]

Figure 3 plots the relative performance of the hybrid analyst (Man + Machine) vs. the

plain AI (Machine). Interestingly, Man + Machine outperforms plain Machine in every

single year. Such outperformance, which captures the incremental value of human analysts

to machines, increases substantially with time. The combined results portrays a bright future

for Man + Machine: not only the combination attains better performance than either side

alone, but also the incremental value of human does not weaken with the technology.

[Insert Figure 3 here]

4. Man vs Machine: Relative Advantage of Analyst vs AI

In this section, we strive to understand when human analysts perform better than the

AI and when otherwise. Such understanding will help to “unbox” the black box associated

with AI or machine learning, and provides intuition and guidance on the applicability of AI

for researchers and investors.

We consider a number of variables at the analyst, firm, and industry levels that are

potentially relevant for the performance of human analysts and AI, which are defined in

Section 2.4. We group these variables into several classes. First, we consider a number of

proxies for information asymmetry or opacity, including Amihud Illiquidity, Stock Volatility,

Log Market Cap, and # Institutional Owners. Second, we include variables representing the

volume of information (# 8K Reports) and the tangibility of information (Intangible Assets).

Third, we examine several variables that affect the information and resources available to the

analyst, e.g., Forecast Horizon, # Analysts in Brokerage Firm, and # Previous Predictions.

Finally, we consider Industry Distress, highlighting the uncertainties at the industry level
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(Opler and Titman, 1994), and finally Time Trend, which can help to capture temporal

patterns.

For each target price forecast, we define two variables that measure the relative per-

formance of humans vs AI. First, the indicator variable Analyst Beats AI equals one if the

absolute forecast error of the analyst is smaller than that of the AI, and zero otherwise.

Second, the continuous measure Forecast Error Difference is the difference between the ab-

solute prediction error (of log price as defined in Equation (1) ) of the AI and that of the

analyst, scaled by the maximum of these two prediction errors if the difference is non-zero.

A positive and large value of Forecast Error Difference is in favor of analyst accuracy.

We estimate the follow regression, on the panel data of firm i, analyst j, and date t, to

understand the determinants of the relative strengths of humans and AI,

Relative Performancei,j,t = X ′i,j,tβ + αi + αyear + εi,j,t, (2)

where the dependent variable Relative Performance is either Analyst Beats AI (Panel A)

or Forecast Error Difference (Panel B), Xi,j,t include the independent variables discussed

above, and αi and αyear represent firm and year fixed effects, respectively. The results are

reported in Table 5.

[Insert Table 5 here]

Table 5 show that, controlling for year and firm fixed effects, humans are more likely to

outperform when covering illiquid, small firms with higher intangible assets, consistent with

the notion that such firms are subject to higher information asymmetry and require deeper

institutional knowledge to understand. On the other hand, equipped with vast processing

power, AI performs better for firms with a larger volume of disclosed information, as proxied

by # 8K Reports each year.

Human analysts perform better when the forecast horizon is shorter, indicating that they

are better at taking cues from, or perhaps have access to, informal value-relevant information

19



ahead of a shorter forecast horizon. Those working for larger brokerage hours performance

better, both because of positive skill matching to more prestigious work places and because

of the more abundant resources and research capacity at such places.

Outside the firms, humans perform better when the associated industry is experiencing

a downturn, suggesting that the AI has more difficulty handling less frequent and more

uncertain events such as an industry recession. Finally, when year fixed effects are not

included, Columns (2) and (4) show that the comparative performance of humans increases

with time. This is probably due to the fact that human analysts are increasingly assisted by

AI and big data technologies over time.

5. Man + Machine: Combining Strengths and Incremental Con-

tributions

5.1. Incremental value of analyst and AI in forecasts made by Man + Ma-

chine

Acknowledging that Man + Machine is superior to either Man or Machine alone, it

is still instructive to understand the respective incremental values of Man and Machine in

the combo. Analogous to the previous section, we define relative performance measures of

the hybrid analyst vs the AI (the human analyst) to capture the incremental value of Man

(Machine). We then reestimate Equation (2) with these relative performance measures as

dependent variables. Table 6 presents the results. Given that incremental value is measured

better with the continuous measure of absolute forecast error difference, we focus on the

results in Panel B.

[Insert Table 6 here]

Similar to the previous findings, we find inputs from analysts are more valuable when

covering firms that are more illiquid and firms with more intangible assets. Moreover, analyst
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inputs have more incremental value in short-horizon forecasts, and during the time period

an industry is experiencing difficulty.

We note that while analysts in larger brokerage firms perform better than other analysts

when pitted against the AI (Table 5), the former do not add significantly more incremental

value in the Man + Machine model than the latter (Columns (1) and (2) in Panel B of Table

6). Such a contrast in the results highlight that democratizing AI technology levels the

playground: When we let all analysts (from large and small brokerage houses) be equipped

with AI assistance in the Man + Machine model, disparity in institutional resources does not

significantly affect the incremental value of human inputs. In a similar vein, the incremental

value of human does not decrease as the volume of information (hence demand for processing

capacity) increases, though this constitutes a human disadvantage when forecasting alone

without AI inputs.

5.2. Impact of Man + Machine: An event study

In this section, we resort to an event study to sharpen the inference of the impact of

integrating man and machine in stock analyses. In recent years, the infrastructure of “big

data” has created a new class information about companies that is collected and published

outside of the firms, which can provide unique and timely clues into market demand, profit

prospects, and investment opportunities. An important and popular type of such alternative

data captures “consumer footprints,” often times in the literal sense such as satellite images

on retail parking lots. Such data, which have to be processed by machine learning models,

have been shown to contain incremental information for earnings and stock prices conditional

on corporate disclosure and news coverage (Zhu, 2019; Katona, Painter, Patatoukas, and

Zeng, 2020). Chi, Hwang and Zhang (2021) show that the analysts use alternative data

more frequently have more precise forecasts.

We build on data from Katona, Painter, Patatoukas, and Zeng (2020) on the staggered in-

troduction of several important alternative data bases, and conduct a difference-in-differences
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test of analysts’ performance versus our AI model before and after the availability of the

alternative data on specific firms. The underlying premise is that analysts who cover firms

that are served by the alternative data are potentially in the situation of Man + Machine, as

they have the opportunity to use the additional, AI-processed, information. We define two

variables based on the staggered introduction of alternative data coverage. The first is Alt

Data Covered, which is one if satellite imaging data are available for the firm at any point

in our sample period (based on the list of covered firms and coverage start dates in Table 1

in Katona, Painter, Patatoukas, and Zeng, 2020), and zero otherwise; The second is Post,

which is an indicator variable that is one if satellite data are currently available (based on

coverage start dates in Table 1 in Katona, Painter, Patatoukas, and Zeng, 2020), or if the

firm is not listed in that table but the date is after 2014,23 and zero otherwise.

Alternative data tend to be large in volume and unstructured in recording. Such data are

hard to process with traditional tool kits. Despite that commercial data vendors may have

preprocessed the alternative data, e.g., satellite imaging data are converted into car counts

for each business location, substantial additional analysis is still needed to render such data

useful for stock analysis. Whether analysts covering the alternative data “treated” firms

could capitalize on the novel information source depends on the AI resources in their work

place. We measure AI resources analysts have access to by the variable AI Hiring, which is

the ratio of the number of AI jobs to the total number of job postings using the Burning

Glass U.S. job posting data and following the classification algorithm developed in Babina,

Fedyk, He, and Hodson (2020).

23Based on anecdotal evidence from news and discussion with industry experts, 2014 is the year most
alternative data become widely available.
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We estimate the following difference-in-differences model,

Analyst Beats AIi,j,t = β1Alt Data Coveredi × Posti,t × AI Hiringj,t

+ β2AI Hiringj,t + β3Posti,t

+ β4Alt Data Coveredi × Posti,t

+ β5Alt Data Coveredi × AI Hiringj,t

+ β6Posti,t + Controlsi,j,t + αi + αyear + εi,j,t. (3)

Note that Alt Data Covered and Post are indexed by firm i and date t while AI Hiring is

indexed by the analyst j (or the brokerage firm associated with the analyst) and date t.

Table 7 reports the results. The sample here is smaller than those in Tables 5 and 6 due to

the requirement that the AI Hiring be observable.

[Insert Table 7 here]

Columns (1) and (2) of Table 7 show that analysts associated with brokerage houses with

greater AI capabilities generally perform better against our AI model, a piece of direct evi-

dence that humans complemented by AIs enjoy a step up in predictive capabilities. Columns

(3) and (4) show that post alternative data, analysts covering affected firms improve their

performance relative to the AI model, but only significantly so when interacting with AI

Hiring. In other words, the improvement of predictive performance post alternative data

concentrates in the subset of analysts who are affiliated with brokerage firms with strong AI

capabilities. Overall results suggest that augmenting humans with new technologies consti-

tutes a promising direction for the analyst profession.

6. Concluding Remarks

In this paper we build an AI analyst to digest corporate disclosure and other information

(qualitative and quantitative), and perform forecast tasks similar to those of stock analysts.
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Our AI analyst is able to beat the majority of human analysts in stock forecasts. A portfolio

following the difference between AI and analyst’s forecasts generates a monthly excess return

of more than 60 basis points. In the contest of “Man vs Machine,” we find that the relative

advantage of such an AI Analyst is stronger when when information is more transparent

and voluminous. Human analysts remain competitive when critical information requires

institutional knowledge (such as the nature of intangible assets). The edge of the AI analyst

over human analysts declines over time, especially when analysts gain access to alternative

data and to in-house AI resources. Combining AI and the art of human experts produce

the highest potential in generating accurate forecasts in settings when the two skills are

complementary, suggesting a future of “Man + Machine” in high-skilled professions.

The complementarity between humans and machines documented in this study also

provides guidance about how humans can adapt to survive and thrive in the age of machines.

For example, reforming education and professional training to strengthen soft skills and

creativity can help human professionals to better prepare for the incoming future.
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Figure 1: Man vs. Machine: The Performance of AI vs. Analysts

This figure plots the beat ratio, or the proportion of AI price forecasts that are more accurate than
the corresponding analyst price forecasts in each year. The blue line in the middle plots the annual
beat ratios, and the surrounding blue-dotted lines indicate the 95% confidence interval of the beat
ratio. The red line gives the best linear approximation of the time-series trend in beat ratios.
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Figure 2: Man + Machine: The Performance of AI-assisted Analyst vs Analysts

This figure plots the proportion of AI-assisted Analyst recommendations that are more accurate
than the Analyst recommendations alone on an annual basis. The blue line in the middle gives
the annual AI-assisted Analyst beat ratios, the blue-dotted lines above and below are the 95%
confidence interval of the beat ratio, and the red line gives the best linear approximation of the
trend in beat ratios.
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Figure 3: Man + Machine: The Performance of AI-assisted Analysts vs AI

This figure plots the proportion of AI-assisted analyst recommendations that are more accurate
than the AI recommendations alone on an annual basis, or the "beat ratio". The blue line in the
middle gives the annual AI-assisted analyst beat ratios, the blue-dotted lines above and below are
the 95% confidence interval of the beat ratio, and the red line gives the best linear approximation
of the trend in beat ratios.
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Table 1: Summary Statistics

This table reports the summary statistics of key variables. The firm-level, industry-level and
macroeconomic variables are defined in Section 2.4. The AI and satellite coverage variables include
AI Hiring, Alt Data Covered and Post. AI Hiring is the ratio of the number of AI jobs to the
total number of job postings. Alt Data Covered is one if the firm is covered by satellite, and
zero otherwise. Post is equal to one in the following to cases and zero otherwise: (1) if a firm is
covered by satellite and the date is after the starting cover date. (2) When a firm is not covered by
satellite, we assume the post is 1 if the date is after 2014. The mean, median, standard deviation,
25 percentile, 75 percentile and number of observations are reported in the table.

Variables Mean Median Std P25 P75 N

Panel A. Firm-level, industry-level and macroeconomic variables

Amihud Illiquidity 0.69 0.01 91.54 0.00 0.02 215,934
Stock Volatility 2.59 2.26 1.32 1.68 3.16 215,934
Log Market Cap 7.99 7.91 1.69 6.79 9.14 215,934
# 8K Reports 3.08 1.00 20.37 0.00 2.00 215,934
Intangible Assets 0.24 0.28 0.09 0.20 0.32 215,934
Forecast Horizon 190.06 188.00 106.18 88.00 287.00 215,934
# Analysts in Brokerage Firm 3.36 3.47 0.98 2.77 4.06 215,934
# Previous Predictions 31.80 17.00 41.91 7.00 40.00 215,934
# Institutional Owners 2.87 1.94 3.09 1.01 3.72 215,934
Industry Distress 0.25 0.00 0.43 0.00 1.00 215,934

Panel B. AI and satellite coverage variables

AI Hiring 0.10 0.00 2.56 0.00 0.00 85,950
Alt Data Covered 0.04 0.00 0.20 0.00 0.00 85,950
Post 0.24 0.00 0.43 0.00 0.00 85,950

34



Table 2: Comparison of Machine Learning Models

We apply a variety of machine learning models to predict stock prices (log). We use the past five years as a rolling window to train
our models. We compare the AI predicted stock price and the analyst predicted ones with the end-of-year actual price. If the absolute
difference between AI predicted values and the actual price is smaller than that between analyst values and actual price, we define this
case as AI beats analysts. This table presents the beat ratio (the number of times AI beats analysts/total number of predictions).

Method Beat ratio Method description

OLS Regression 19.3% The traditional linear method that minimizes the in-sample sum of squares of
prediction errors

Elastic-Net Regression 23.3% A quasi-linear ML method that combines features of LASSO and Ridge regressions
to allow dimension reduction

Support Vector Regression 27.2% A quasi-linear ML method that focuses on marginal points with higher estimation
errors to allow dimension reduction

LSTM Neural Networks 50.1% A deep learning model that uses recurrent neural networks to incorporate sequential
or time-series information in the predictors

Random Forest 51.7% A decision-tree based ML model that combines decision trees generated with
random sets of predictors to capture complex interactions

Gradient Boosting 52.0% A decision-tree based ML model that combines a series of decision trees and
sequentially approximates the predicted variable to capture complex interactions

Our Final AI Model 53.7% An ensemble ML model that combines the LSTM Neural Networks, Random Forest
and Gradient Boosting methods
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Table 3: Persistence of Performance of AI Analyst

Each year, analysts are sorted by mean squared prediction errors based on past one, two, and up-
to-five years. If the mean square error over last year is among the smallest/largest 50%, the analyst
is the top/bottom in 1 year. If the mean square error over last two (three, four and five) years is
among the smallest/largest 50%, the analyst is the top/bottom in 2 (3, 4, and 5) years. The panel
A reports the AI beat ratio with respect to analysts who are among the top or bottom 50% over
the last year, two years until five years. On the other hand, if the mean square errors of each of
the past two (three, four and five) years are among the smallest 50%, the analyst is persistently
top over 2 (3, 4, and 5) years. The panel B reports the AI beat ratio with respect to analysts who
are persistently among the top or bottom 50% over the last year, two years until five years.

Panel A: Beat ratio with respect to analysts who are among the top or bottom 50%

1 year 2 years 3 years 4 years 5 years

Analyst Top 51.02% 51.00% 50.82% 50.82% 50.92%
Analyst Bottom 55.66% 55.43% 55.60% 55.59% 55.47%

Panel B: Beat ratio with respect to analysts who are persistently among the top or bottom 50%

1 years 2 years 3 years 4 years 5 years

Analyst Persistent Top 51.02% 50.45% 49.83% 48.91% 49.24%
Analyst Persistent Bottom 55.66% 56.41% 56.45% 55.84% 55.82%
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Table 4: Portfolio Performance following Machine vs Man Recommendations

For each month/every six months, all predictions of AI and analysts are collected over past 30, 60, 90 and
360 days. When comparing AI predictions with analysts’, if AI prediction is higher than analyst prediction,
it is a buy signal. Otherwise, it is a sell signal. Among all signals over past 30, 60, 90 and 360 days, if there
are more buy signals, the stock is longed. Otherwise, the stock is shorted. The stocks are rebalanced every
month/semi-annually. The monthly percentage return of the long-short, long-leg (stocks only with a buy
sign) and short-leg portfolios (stocks only with a short sign) as well as alphas generated from FF3, FFC4,
FF5 and FF6 models are presented. The OLS standard error is used to construct t-stats. The t-stats are
reported in parentheses. ***, **, * denote statistical significance at the 0.01, 0.05, and 0.10 levels (two-
tailed), respectively. Panel A/B reports those results for monthly/semi-annually rebalanced portfolios. The
number of stocks in each portfolio is reported at the bottom of each panel.

Panel A. Portfolio returns with monthly rebalancing

Portfolio information horizon
Long-Short 30 days 60 days 90 days 360 days

Ret 0.91*** 0.90*** 0.91*** 0.85***
(2.94) (3.25) (3.34) (3.78)

FF3 0.85*** 0.84*** 0.86*** 0.82***
(2.82) (3.16) (3.27) (3.89)

FFC4 0.92*** 0.90*** 0.91*** 0.84***
(3.05) (3.40) (3.50) (4.00)

FF5 0.69** 0.68** 0.70*** 0.63***
(2.30) (2.56) (2.67) (3.03)

FF6 0.74** 0.72*** 0.74*** 0.65***
(2.48) (2.75) (2.86) (3.16)

Long-Leg 30 days 60 days 90 days 360 days

Ret 1.56*** 1.51*** 1.53*** 1.50***
(3.15) (3.13) (3.21) (3.27)

FF3 0.87*** 0.82*** 0.85*** 0.83***
(4.85) (4.96) (5.27) (5.66)

FFC4 1.03*** 0.97*** 1.00*** 0.95***
(6.58) (6.74) (7.11) (7.19)

FF5 0.80*** 0.74*** 0.77*** 0.74***
(4.50) (4.54) (4.84) (5.14)

FF6 0.89*** 0.83*** 0.85*** 0.81***
(5.89) (6.02) (6.40) (6.46)

Short-Leg 30 days 60 days 90 days 360 days

Ret 0.64 0.61 0.62 0.65
(1.15) (1.13) (1.15) (1.26)

FF3 0.02 -0.02 -0.01 0.01
(0.07) (-0.08) (-0.04) (0.06)

FFC4 0.12 0.07 0.08 0.11
(0.42) (0.30) (0.34) (0.56)

FF5 0.11 0.07 0.07 0.11
(0.38) (0.26) (0.28) (0.58)

FF6 0.16 0.11 0.12 0.16
(0.56) (0.46) (0.48) (0.85)
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Panel B. Portfolio returns with semi-annual rebalancing

Portfolio information horizon
Long-Short 30 days 60 days 90 days 360 days

Ret 0.92*** 0.93*** 0.93*** 0.76***
(2.96) (3.04) (3.06) (3.17)

FF3 0.89*** 0.89*** 0.90*** 0.73***
(3.02) (3.08) (3.12) (3.26)

FFC4 0.94*** 0.94*** 0.94*** 0.73***
(3.20) (3.25) (3.26) (3.27)

FF5 0.62** 0.64** 0.64** 0.52**
(2.16) (2.25) (2.27) (2.40)

FF6 0.67** 0.68** 0.68** 0.54**
(2.35) (2.43) (2.44) (2.48)

Long-Leg 30 days 60 days 90 days 360 days

Ret 1.58*** 1.60*** 1.60*** 1.54***
(3.31) (3.42) (3.44) (3.39)

FF3 0.86*** 0.88*** 0.88*** 0.82***
(5.01) (5.58) (5.76) (5.81)

FFC4 1.00*** 1.00*** 1.00*** 0.92***
(6.44) (7.08) (7.31) (7.17)

FF5 0.72*** 0.74*** 0.74*** 0.68***
(4.33) (4.87) (5.06) (5.04)

FF6 0.81*** 0.82*** 0.83*** 0.75***
(5.61) (6.27) (6.52) (6.36)

Short-Leg 30 days 60 days 90 days 360 days

Ret 0.66 0.67 0.67 0.78
(1.15) (1.19) (1.19) (1.50)

FF3 -0.03 -0.02 -0.02 0.09
(-0.11) (-0.07) (-0.08) (0.43)

FFC4 0.06 0.06 0.06 0.20
(0.21) (0.24) (0.25) (0.95)

FF5 0.10 0.10 0.10 0.16
(0.37) (0.38) (0.39) (0.75)

FF6 0.14 0.14 0.14 0.21
(0.53) (0.53) (0.55) (1.05)

38



Table 5: Man vs. Machine: The Relative Advantage of Analyst vs AI

Panel A presents the coefficients and t-stats of regressing the analyst-beat-AI indicator on the firm-
level, industry-level and macroeconomic variables presented in Table 1. Analyst beats AI indicator
is 1/0 if analysts beats/does not beat AI. Panel B presents the coefficients and t-stats of regressing
Forecast Error Difference Analyst vs. AI on the same variables. Forecast Error Difference Analyst
vs. AI is defined as the difference between absolute prediction error between AI and Analysts,
divided by the maximum value of these two prediction errors. The number is positive if analyst has
smaller absolute error, i.e. analyst beat AI. To calculate t-statistics, standard errors are clustered at
the firm level. ***, **, * denote statistical significance at the 0.01, 0.05, and 0.10 levels (two-tailed),
respectively.

Panel A. Man vs. machine: when analyst beats AI

Dependent variable
Analyst beats AI

Variables (1) (2) (3) (4)

Amihud Illiquidity 0.224*** 0.224*** 0.358*** 0.346***
(6.40) (6.76) (10.33) (10.01)

Stock Volatility -0.449 -1.548*** 0.952*** 0.530
(-1.49) (-4.34) (2.86) (1.29)

Log Market Cap -0.001 -0.003 -0.039*** -0.030***
(-0.26) (-0.88) (-5.26) (-4.03)

# 8K Reports -0.273*** -0.385*** -0.217* -0.343***
(-2.84) (-3.56) (-1.86) (-2.59)

Intangible Assets 0.199*** 0.187*** 0.245** 0.209**
(3.96) (3.77) (2.32) (1.96)

Forecast Horizon -0.340*** -0.316*** -0.354*** -0.327***
(-11.62) (-11.09) (-13.93) (-13.18)

# Analysts in Brokerage Firm 0.007*** 0.008*** 0.005*** 0.005***
(3.64) (3.97) (3.04) (3.39)

# Previous Predictions -0.150 -0.020 -0.125 0.020
(-0.97) (-0.13) (-0.99) (0.17)

# Institutional Owners 0.145 0.106 1.037 1.015
(0.79) (0.59) (1.27) (1.28)

Industry Distress 0.041*** 0.025** 0.031*** 0.026**
(5.31) (2.20) (3.96) (2.15)

Time Trend 0.005*** 0.008***
(5.89) (5.14)

Constant 0.418*** 0.466*** 0.636*** 0.492***
(12.53) (6.53) (10.04) (5.17)

Year fixed effects No Yes No Yes
Firm fixed effects No No Yes Yes
Observations 215,934 215,934 215,934 215,934
Adjusted R-squared 0.01 0.02 0.120 0.128
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Panel B. Man vs. machine: Relative prediction error

Dependent variable
Forecast Error Difference Analyst vs. AI

Variables (1) (2) (3) (4)

Amihud Illiquidity 0.347*** 0.347*** 0.419*** 0.375***
(8.16) (8.79) (8.93) (8.11)

Stock Volatility -1.216*** -2.891*** 0.630 -0.169
(-3.26) (-6.41) (1.63) (-0.36)

Log Market Cap 0.001 -0.002 -0.045*** -0.036***
(0.29) (-0.43) (-5.37) (-4.18)

# 8K Reports -0.241* -0.335*** -0.148 -0.277*
(-1.85) (-2.60) (-1.01) (-1.85)

Intangible Assets 0.243*** 0.225*** 0.305** 0.265**
(3.68) (3.47) (2.32) (2.02)

Forecast Horizon -0.462*** -0.428*** -0.495*** -0.459***
(-13.15) (-12.52) (-15.62) (-14.84)

# Analysts in Brokerage Firm 0.009*** 0.010*** 0.006*** 0.007***
(3.73) (4.21) (3.52) (3.95)

# Previous Predictions -0.131 0.029 -0.185 -0.020
(-0.66) (0.15) (-1.09) (-0.12)

# Institutional Owners 0.095 0.039 0.396 0.361
(0.35) (0.14) (0.43) (0.40)

Industry Distress 0.051*** 0.024* 0.036*** 0.022
(5.25) (1.69) (3.69) (1.53)

Time Trend 0.005*** 0.010***
(4.37) (5.48)

Constant -0.068* 0.011 0.201*** 0.060
(-1.72) (0.14) (2.71) (0.52)

Year fixed effects No Yes No Yes
Firm fixed effects No No Yes Yes
Observations 213,164 213,164 213,164 213,164
Adjusted R-squared 0.01 0.02 0.147 0.155
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Table 6: Man + Machine: The Incremental Value of Analyst and AI

Panel A presents the coefficients and tT-stats of regressing Analyst + AI Beats AI or Analyst +
AI Beats Analyst indicator on the firm-level, industry-level and macroeconomic variables presented
in Table 1. Analyst + AI Beats AI/Analyst + AI Beats Analyst indicator is 1/0 if analysts+AI
beats/does not beat AI/analyst. Panel B presents the coefficients and t-stats of regressing Incre-
mental Value AI/Analyst on the same variables. Incremental Value AI/Analyst is defined as the
absolute prediction error of AI/analyst minus absolute prediction error of analysts+AI, divided
by the maximum value of these two prediction errors. The number is positive if analysts+AI has
smaller absolute error than AI/analyst. To calculate the t-stats, standard errors are clustered at
the firm level. ***, **, * denote statistical significance at the 0.01, 0.05, and 0.10 levels (two-tailed),
respectively.

Panel A. Analyst + AI beats analyst/AI.

Dependent variable
Analyst + AI Beats AI Analyst + AI Beats Analyst

Variables (1) (2) (3) (4)

Amihud Illiquidity 0.136*** 0.283*** -0.254*** -0.347***
(5.94) (8.66) (-5.93) (-9.70)

Stock Volatility -0.403 0.004 1.720*** -0.151
(-1.33) (0.01) (5.02) (-0.37)

Log Market Cap -0.002 -0.005 0.002 0.034***
(-0.51) (-0.68) (0.45) (4.50)

# 8K Reports -0.500** -0.486 0.192* 0.175*
(-2.23) (-1.62) (1.88) (1.76)

Intangible Assets 0.144*** 0.279** -0.138*** -0.147
(3.82) (2.28) (-2.72) (-1.34)

Forecast Horizon -0.181*** -0.188*** 0.267*** 0.278***
(-6.15) (-6.01) (10.63) (10.33)

# Analysts in Brokerage Firm -0.002 -0.002 -0.009*** -0.006***
(-0.97) (-1.12) (-4.98) (-3.96)

# Previous Predictions 0.168 0.172 0.256** 0.238
(1.25) (1.10) (2.22) (1.63)

# Institutional Owners 0.167 1.006** -0.037 -0.811
(0.93) (2.12) (-0.21) (-1.23)

Industry Distress 0.028** 0.031** -0.029*** -0.030***
(2.45) (2.51) (-2.61) (-2.63)

Constant 0.629*** 0.482*** 0.615*** 0.502***
(5.96) (3.61) (7.69) (4.60)

Year fixed effects Yes Yes Yes Yes
Firm fixed effects No Yes No Yes
Observations 212,960 212,960 215,934 215,934
Adjusted R-squared 0.01 0.102 0.02 0.118
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Panel B. Incremental value of analysts/AI.

Dependent variable
Incremental Value Analyst Incremental Value AI

Variables (1) (2) (3) (4)

Amihud Illiquidity 0.071*** 0.085*** -0.342*** -0.350***
(4.63) (3.70) (-7.31) (-6.44)

Stock Volatility 0.054 0.481 3.057*** 0.789*
(0.21) (1.45) (7.25) (1.74)

Log Market Cap -0.003 -0.003 -0.000 0.038***
(-1.04) (-0.49) (-0.03) (4.47)

# 8K Reports -0.281 -0.320 0.065 -0.004
(-1.33) (-1.22) (0.64) (-0.04)

Intangible Assets 0.067** 0.243*** -0.169*** -0.109
(2.22) (2.68) (-2.70) (-0.83)

Forecast Horizon -0.132*** -0.134*** 0.361*** 0.392***
(-4.62) (-4.34) (12.21) (12.08)

# Analysts in Brokerage Firm -0.002 -0.001 -0.011*** -0.008***
(-1.55) (-1.15) (-5.22) (-4.53)

# Previous Predictions 0.257* 0.260 0.236 0.303
(1.66) (1.49) (1.48) (1.60)

# Institutional Owners 0.103 0.239 0.009 -0.153
(0.60) (0.54) (0.04) (-0.22)

Industry Distress 0.022** 0.022** -0.016 -0.015
(2.54) (2.41) (-1.23) (-1.09)

Constant 0.057 -0.094 0.036 -0.142
(1.05) (-1.19) (0.40) (-1.12)

Year fixed effects Yes Yes Yes Yes
Firm fixed effects No Yes No Yes
Observations 212,960 212,960 215,934 215,934
Adjusted R-squared 0.01 0.062 0.02 0.140
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Table 7: Man + Machine Event Study: Alternative Data Covered Firms

This table presents the coefficients and t-stats of regressing Analyst Beats AI indicator on brokerage
AI Hiring, Alt Data Covered, Post, and the interactions among these variables. Analyst Beats AI
indicator is 1/0 if analysts beats/does not beat AI. AI Hiring is the ratio of the number of AI jobs
to the total number of job postings. Alt Data Covered is one if the firm is covered by satellite, and
zero otherwise. Post is equal to one in two case: (1) if the firm is covered by satellite and the date
is after the starting cover date. (2) if the firm is not covered by satellite, we assume the post is 1 if
the date is after 2014. The control variables are the firm-level, industry-level and macroeconomic
variables presented in Table 1. Standard errors are clustered at the firm level. ***, **, * denote
statistical significance at the 0.01, 0.05, and 0.10 levels (two-tailed), respectively.

Dependent variable: Analyst Beats AI
Variables (1) (2) (3) (4)

Alt Data Covered × Post × AI Hiring 6.674*** 4.807**
(3.27) (2.12)

AI Hiring 0.141** 0.192** 0.206** 0.243**
(2.00) (2.52) (2.56) (2.44)

Alt Data Covered -0.011
(-0.18)

Post 0.109* 0.004
(1.69) (0.05)

Alt Data Covered × Post 0.057 -0.028
(0.74) (-0.31)

Alt Data Covered × AI Hiring -2.880** -1.429
(-2.02) (-0.89)

Post × AI Hiring -0.322 -0.282
(-1.46) (-1.20)

Constant 0.354*** 0.527*** 0.360*** 0.526***
(6.30) (4.20) (6.56) (4.19)

Controls Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Firm fixed effects No Yes No Yes
Observations 85,950 85,950 85,950 85,950
Adjusted R-squared 0.02 0.166 0.02 0.167
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Appendix A. List of Variables

Table A1: List of All Variables Used in AI Algorithms
All Variables (and the definition/source) used in the machine learning algorithms are provided.

Firm Characterisitics Definition and/or Source
Momentum Past 12-month return, Jegadeesh and Titman (1993)
Composite Equity Issuance Daniel and Titman (2006)
Gross Profits-to-Assets Novy-Marx (2013)
Asset Growth Cooper, Gulen, and Schill (2008)
Investment-to-Assets Titman, Wei, and Xie (2004) and Xing (2008)
Net Operating Assets Hirshleifer, Hou, Teoh, and Zhang (2004)
Accruals Sloan (1996)
Net Stock Issues Ritter (1991) and Loughran and Ritter (1995)
Failure Probability Campbell, Hilscher, and Szilagyi (2008)
O-Score Ohlson (1980)
Return on Assets Fama and French (2006) and Chen, Novy-Marx, and Zhang (2011)
Book-to-Market Equity Rosenberg, Reid and Lanstein (1985)
Debt-to-Market Bhandari (1988)
Earnings-to-Price Basu (1983)
Cash Flow-to-Price Lakonishok, Shleifer, and Vishny (1994)
Payout Yield Boudoukh, Michaely, Richardson, and Roberts (2007)
Five-year Sales Growth Rank Lakonishok, Shleifer, and Vishny (1994)
Enterprise Multiple Loughran and Wellman (2011)
Sales-to-Price Barbee, Mukherji, and Raines (1996)
Abnormal Corporate Investment Titman, Wei, and Xie (2004)
Investment-to-Assets Cooper, Gulen, and Schill (2008)
Changes in PPE and Inventory/Assets Lyandres, Sun, and Zhang (2008)
Investment Growth Xing (2008)
Inventory Changes Thomas and Zhang (2002)
Operating Accruals Sloan (1996)
Total Accruals Richardson, Sloan, Soliman, and Tuna (2005)
Net External Finance Bradshaw, Richardson, and Sloan (2006)
Return on Net Operating Assets Soliman (2008)
Profit Margin Soliman (2008)
Asset Turnover Soliman (2008)
Operating Profits-to-Equity Fama and French (2015)
Book Leverage Fama and French (1992)
Advertising Expense-to-Market Chan, Lakonishok, and Sougiannis (2001)
R&D-to-Market Chan, Lakonishok, and Sougiannis (2001)
Operating Leverage Novy-Marx (2011)
Financial Constraints Kaplan-Zingales index, Lamont, Polk, and Saa-Requejo (2001)
Asset Liquidity Scaled by book assets, Ortiz-Molina and Phillips (2014)
Asset Liquidity Scaled by market assets, Ortiz-Molina and Phillips (2014)
IBES Actual Earning IBES actual earning 4 quarter before scaled by adjusted price
Number of Institutional Owners Number of 13F institutional investors that own the stock
Ownership Concentration Herfindahl-Hirschman Index
Total Institutional Ownership Percent of shares outstanding owned by 13F investors
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Industry Variables Definition and/or Source
Competition Measure from 10-K Li, Lundholm, and Minnis (2013)
Fluidity Product market Fluidity, Hoberg, Phillips and Prabhala (2014)
48 Industry Dummy Dummy variables that indicate Fama-French 48 industries
Industry Size Industry Size within past 3, 6, 9 ,12, 24 and 36 months
Industry Earning Industry earning within past 3, 6, 9 12, 24 and 36 months
Macro Variables Definition and/or Source
IP Industrial Production Index
CPI Consumer Price Index
Oil price Crude Oil Price
Tbill3 3-month Treasury Bill
TBond10 10-Year Treasury Constant Maturity Rate
Credit Spread Baa-AAA yield spread
Textual Variables Definition and/or Source
Neg 10KQ Percentage of negative words from 10K/10Q
NegPos 10KQ Percentage of negative minus positive words from 10K/10Q
Neg 8k Percentage of negative words from 8K
NegPos 8K Percentage of negative minus positive from 8K
Neg Other Percentage of negative words from other reports
NegPos Other Percentage of negative minus positive from other reports
ML-based Sentiment ML-based negative tones minus ML-based positive tones scaled

by the length of SEC filings, Cao, Kim, Wang, and Xiao (2020)
ML-based Neg Sentiment ML-based negative tones scaled by the length of SEC filings
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Appendix B. Details of the Machine Learning Models

In this section, we briefly describe the basic structure and strengths of machine learning
models considered in our paper. Interested readers are referred to representative references
for more details, such as Hastie, Tibshirani and Friedman (2009) and Goodfellow, Bengio,
and Courville (2016).

B.1. Quasi-linear Models

Quasi-linear machine learning models generalize linear regressions and classification mod-
els, and are more flexible and can accommodate a larger number of variables than the tra-
ditional linear regressions, by their built-in dimension-reduction capabilities. Quasi-linear
models are typically efficient in model training because they are typically associated with
fast algorithms, such as linear and quadratic programming techniques.

B.1.1. Elastic-Net

The Elastic-Net model is a generalization of the OLS linear regression model. When there
is a large number of predictors, the OLS tends to have good in-sample performance (small
bias in the terms of machine learning) and bad out-of-sample performance (large variation
in the terms of machine learning). Furthermore, the OLS can generate significant loadings
on a large number of independent variables, making the interpretation of the model difficult.
One class of models, the shrinkage models, generalize the OLS by imposing a penalty on the
number and size of non-zero coefficients in the estimation, effectively limiting the model to
focus on a subset of the independent variables and achieving dimension reduction.

The Elastic-Net model, introduced by Zou and Hastie (2005), is a shrinkage model in
which the penalty function is a linear combination of L1 and L2 norms of the coefficients.
In particular, the Elastic-Net model minimizes the following objective function,

min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ1

p∑
j=1
|βj|+ λ2

p∑
j=1
|βj|2. (A1)

The Elastic-Net model is also a generalization of the well-known LASSO and Ridge regression
models. When the hyperparameter λ2 = 0 in (A1), we recover the LASSO model. When
λ1 = 0, we recover the Ridge model. In general, the LASSO model tends to select a few strong
predictors while setting the coefficients of other predictors to essentially zero, but can make
random choices among several strong and correlated variables. The Ridge model usually
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includes more predictors and shrink the cofficients of correlated variables together. The
Elastic-Net model strikes a balance between these charateristics, allowing both a selection
of strong features and the averaging of correlated features.

B.1.2. Support Vector Regression

The support vector regression (SVR) is motivated by support vector machines (SVM)
for classification problems. Consider a classification problem with 2 classes and n predictors,
i.e., each observation belongs to one of two classes and is a point in the n-dimensional
space. Given a training sample, i.e., a set of labeled n-dimensional points, a linear classifier
is equivalent to a (n − 1)-dimensional hyperplane that separates the two classes of points
in the n-dimesional space. The linear SVM searches for the maximum separating (n − 1)-
dimensional hyperplane such that it maximizes the distance from the hyperplane to the
closest data points. To deal with the case that separating hyperplanes may not exist, the
SVM also tolerates misclassified points within some bounds. The SVM thus focuses on
points close to the separating hyperplane, i.e., observations that are on the boundary of the
two classes. In fact, the results the SVM do not depend on observations far away from the
boundary. One key advantage of the SVM is that it performs well when there is a large
number of features relative to the sample size, e.g., in the case of texual and image analysis.
The SVM is regarded as one of the best out-of-the-box machine learning algorithms and has
been widely applied in the classification of text, image, hand-writing, and proteins.

The support vector regression optimizes the following objective function.

min
β

N∑
i=1

V (yi − β0 − xTi β) + λ
p∑
j=1
|βj|2. (A2)

where the cost function V (·) is given by

V (z) =

0, if |z| < ε,

|z| − ε, otherwise.
(A3)

The cost function is insensitive to the signs/sizes of errors if the error size is less than ε, i.e.,
it is more sensitive to points where the estimation error is larger. These marginal points, in
turn, are instrumental in determining the estimated coefficients. The benefit of the support
vector regression is that it allows efficient dimension reduction even with a very large number
of features. However, it may not perform well if the underlying pattern is far away from
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being linear.

B.2. Decision-Tree Based Models

The quasi-linear models considered above may not work well if there are nonlinear re-
lationships among the predictive variables. In this section, we discuss a class of versatile
nonlinear models – decision trees and derived models.

B.2.1. Decision Trees

Decision trees are modeled after human decisions. A decision tree is a series of binary
decisions based on cutoffs of independent variables at each branching point. The tree thus
will divide the rectangular feature space into smaller rectangular blocks. The decision tree
regression then use the sample mean of the dependent variable in each block as the prediction
for any point in the block.

Decision trees have the benefit of being easily interpretable because it is modeled after
human decisions (similar to a step-by-step instructions) and can also be displayed graphically
(as binary trees). Trees are also a flexible non-linear model that can model a variety of
nonlinear patterns given the large degree of freedom in specifying the sequences of branching
rules.

However, trees do not have a high level of accuracy by themselves because of the restric-
tive form of the binary branching process, which forces the sample to be split into rectangular
regions and may not approximate the real underlying patterns (whether linear or nonlinear)
well. Trees are also non-robust. In addition, a small change in the data can lead to large
changes in the structure of the estimated tree because the tree structure is discrete, not
continuous. Several methods, including random forest and gradient boosting, use trees as
basic building blocks to form ensemble predictors and achieve superior performance.

B.2.2. Random Forest

A random forest (introduced by Breiman, 2001) proceeds in the following way. First, it
involves drawing a bootstrapped sample (drawing with repetition) from the original sample.
Second, on the bootstrapped sample, one builds a decision tree, selecting a splitting predictor
among only a random m features of the total p predictors. Third, one repeats the above two
steps to build a number of decision trees, and form the ensemble predictor by taking the
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mean predictor of all the trees.
Random forests perform better than simple trees for several reasons. First, through ag-

gregating predictions over bootstrapped samples, it reduces the variance and non-robustness
of single trees. Second, the random feature selection in the second step above ensures that
the estimated trees are not too correlated, avoiding relying only on a few prominent features
and further reducing the variance of the model.

B.2.3. Gradient Boost

Boosting also combines a number of weak models to generate a stronger model. In
boosting of trees, a number of trees are constructed sequentially, i.e., each tree is constructed
using information based on the previously constructed trees. In gradient boosting, each
decision tree is fit to the residuals of the model, not to the outcome. Once a new tree is
obtained, it is added to the predictive function to update it, usually with a learning weight
multiplied to the tree predictor to adjust the rate of learning new information. Then new
residuals are obtained from the updated predictive function and the process is repeated for a
number of times to obtain the final ensemble predictor. Because boosting models aggregate
results of decision trees sequentially, each component tree does not need to be very precise
and can be simple, i.e., having a low depth.

In a sense, gradient boosting is similar to the Newton’s gradient algorithm in optimiza-
tion. It approximates the true underlying function sequentially by improving on the predicted
residuals/errors gradually. This allows the final predictive function to have a much richer
and more flexible structure and thus much better performance than single decision trees. It
also reduces the non-robustness of single trees through using an ensemble of trees. For these
reasons, gradient boosting is one of the best off-the-shelf machine learning methods.

B.3. Deep Learning Model: Long-Short Term Memory Neural Networks

The neural networks models, initial motivated by the neuron structures in the brains
of humans and animals, blossomed after breakthroughs in algorithms and computing power
(LeCun, Bengio and Hinton, 2015). Neural networks models, also called deep learning mod-
els, have become some of the most powerful models and achieved near- or super-human
capabilities in a wide variety of applications, such as natural language processing, speech
recognition, computer vision, game playing, and autonomous driving.

There are many different architechtures of neural networks, such as the simplest Feed-
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forward Neural Networks for straightforward classification tasks, the Convoluntional Neural
Networks for image and pattern recognition, and Recurrent Neural Networks (RNN) that
can process sequential data such as speech and text. Long-Short Term Memory (LSTM)
Neural Networks are a special type of RNN that is the key to the many successes of RNN,
including speech recognition, language modeling, and translation.

In a neural network, there are nodes (neurons) that are connected to each other. There
are three types of nodes: input nodes that are used to receive data; output nodes that
produce desired outcomes or predictions; and intermediate nodes that process the data from
input nodes and convert them to outputs. The connections of the nodes determine the
structure of the neural network and its features. RNNs are neural networks with loops, or
nodes that are connected to themselves.

LSTM networks are introduced by Hochreiter and Schmidhuber (1997) to solve the
problem that standard RNNs have trouble retaining “memory” of the much earlier parts of
sequential input data, when processing the later parts of the data. Since sequential data
may have long-term dependencies, i.e., parts far away in the sequence may be related, it is
important to have “long-term memory” to handle them. LSTM networks have a sequence of
nodes that are specifically designed to retain long-term information and update it continu-
ously with new information in a flexible way. As a result, LSTM can capture both short-term
and long-term relations in sequential or time-series data very well, suggesting its potential
applications in financial economics given the abundance of time-series financial data.
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