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A decision to buy an item at a regular price or wait for a possible markdown involves a multi-dimensional

trade-off between the value of the item, the delay in getting an item, the likelihood of getting it and the

magnitude of the price discount. Such trade-offs are prone to behavioral anomalies/regularities by which

human decision makers deviate from the discounted expected utility model, the benchmark adopted in the

existing markdown management literature. In this paper we build an axiomatic framework that accounts for

three well-known anomalies, and produces a parsimonious generalization of discounted expected utility. We

consider a Stackelberg-Nash game between a firm that decides the markdown discount and a continuum of

consumers who decide to wait or buy, anticipating other consumers’ decisions and the resultant likelihood of

product availability that emerge in the equilibrium. We solve the markdown management problem analyti-

cally, and contrast the results of our model to those under the discounted expected utility. Finally, we elicit

the realistic values of model parameters by means of a laboratory experiment. We show that accounting for

the behavioral anomalies results in substantially larger markdowns than the current literature suggests, and

leads to noticeable revenue gains.
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1. Introduction

This paper deals with a fundamental decision that consumers in developed economies make on a

regular basis: buy an item now at the tag price p, or wait until time t when the product will be

marked down at a price p(1−d), but may only be available with probability q. Understanding how

consumers make such wait-or-buy decisions is crucial for retailers to properly optimize markdowns.

Markdowns in turn are critically important for retailers as they correspond to approximately a

third of unit sales and a fifth of dollar sales (Smith and Achabal 1998, Agrawal and Smith 2009).
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Our starting point is the observation that the wait-or-buy decision is a four-dimensional trade-

off between the value of the item, the magnitude of the price discount, the likelihood of getting

the item, and the delay in getting it. The existing markdown management literature assumes that

consumers use the discounted expected utility (DEU for short) model to resolve these trade-offs.

As we discuss in §2, trade-offs in each of these dimensions are prone to behavioral anomalies by

which human decision makers deviate from DEU. The reason the DEU model fails to explain these

anomalies is because it treats each dimension in a linear and separate way, whereas people view

them in a non-linear and interdependent way. For instance, individuals’ sensitivity to risk of not

obtaining an item depends on the time delay and the magnitude of the discount, sensitivity to time

delay depends on the discount and risk, and so on.

We capture this interdependency through the notion of psychological distance between the

prospects of “buy now for sure” (zero distance) and “perhaps buy later” (both time and risk dis-

tance). Using this notion in §3 we develop a new preference model of consumer wait-or-buy choice

that accounts for three sets of well-known behavioral anomalies. These anomalies are: the common

ratio effect describing non-linearity in sensitivity to risk; the common difference effect (a.k.a., hyper-

bolic discounting), describing the non-linearity in sensitivity to time; and subendurance, describing

how sensitivity to time depends on the magnitude of the payoff. Previous research considered mod-

els that account for these individual anomalies, but there appears to be no model that accounts

for these anomalies simultaneously, which is necessary to describe a wait-or-buy decision because

is combines risk, time and payoff. Rather than simply guessing a model that would do such a job

– and this is one of the key contributions of our paper – we set preference conditions (axioms)

that build on these anomalies. Based on these axioms we then derive the new model that captures

the interdependencies between individuals’ perceptions of time, risk and payoffs as are manifested

through these anomalies. The result is a parsimonious generalization of the DEU model.

We then use our new model to optimize retailer’s markdown discount, and compare it to the one

optimal under the DEU model of the current literature. To do so we consider a Stackelberg-Nash

game between the firm and a continuum of consumers. As described in §4, consumers (Stackelberg

followers), given the discount, anticipate other consumers’ decisions and the resultant probability

of product availability, all of which are endogenously determined in the Nash equilibrium. Antic-

ipating this equilibrium, in §5 the retailer (Stackelberg leader) solves the markdown optimization

problem. Through a combination of analytical and numerical results we show that, compared

with the discounted expected utility benchmark, our behavioral model leads to larger optimal

markdowns, and larger revenues. Smith and Achabal (1998) and Agrawal and Smith (2009) argue
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that retailers should offer larger markdowns based on the dependency between the demand and

remaining available inventory, and Özer and Zheng (2014) argue that dynamic pricing is even more

valuable than previously thought because of the non-pecuniary behavioral1 factors such as con-

sumers’ regret and misperceptions of product availability. We reach the same conclusion based on

the consumers’ psychological perceptions of time, risk and price discount.

To understand this result recall that under DEU the optimal markdown is selected to balance the

marginal revenue from selling more units at the markdown price with the marginal cost of diverting

consumers from buying at the tag price. The behavioral anomalies we study affect this balance in

two ways. First, subendurance implies that consumers are less patient for small markdowns, and

more patient for large ones. At the markdown level optimal for DEU, the former effect dominates,

thus a retailer can exploit this impatience and offer larger markdowns without sacrificing sales at the

tag price. Second, the non-linearities in risk and time perception in our model imply that consumers

are more sensitive to psychological distance than the DEU model assumes when distances are small,

but are less sensitive when distances are large. Increasing the markdown increases demand, which

increases product availability risk and therefore the psychological distance. Thus, consumers who

at the DEU-optimal markdown were ‘buying now’ (i.e., had a zero distance) are very sensitive to

increased distance; consequently they continue to buy now. Likewise, those who were waiting under

the DEU are continuing to wait as they are less sensitive to the increased distance because waiting

implies a positive psychological distance to begin with. The subendurance and non-linearity effects

complement each other and allow a retailer to offer larger markdowns and gain additional revenue.

To assess realistic values of markdown increases and revenue gains in §6 we elicit model param-

eters through a laboratory experiment. To ensure the quality of the data we used binary questions

and choice-lists (Holt and Laury 2002), in which participants face a battery of wait or buy choices

under different price discount and risk scenarios. We observe that subjects’ responses are remark-

ably consistent and reveal clear indifference points at which subjects switch from buying to waiting.

The existence of such indifference points implies that the observed decisions are non-trivially corre-

lated. We therefore use indifference points (and not the raw choice data) to fit our model. Further,

we use the least absolute deviation (quantile) regression (Koenke and Hallock 2001) to take care of

the censored error structure. To make sure individuals are properly motivated we adopt a refined

version of the randomized incentive scheme (RIS), called PrInce. In RIS, after the experiment, one

of the choices faced by a subject is randomly selected and played for real; in PrInce, one choice is

1 For broader discussion of behavioral issues in pricing see Özer and Zheng (2012); Chapters 2.1 and 3.1.2 are
particularly relevant for our study.
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randomly pre-selected and given to a participant in a sealed envelope before the experiment; this

has been shown to improve the quality of eliciation (Johnson et al. 2014).

After estimating the parameters, we use these to solve our game: calculate the associated con-

sumer wait-or-buy equilibrium and anticipating it, optimize the retailer’s markdown discount. The

resulting optimal discount is 5-10% larger, and the revenue is 1-1.5% larger, than what would be

optimal if the retailer were to assume that consumers behave according to the discounted expected

utility model. Note that a typical retailer operates with a net margin of approximately 3%2; hence

our new, behaviorally-inspired model has a potential to significantly increase retailers’ profitability.

Our paper contributes to two bodies of behavioral operations literature. First, it is among the

few recent studies that enrich dynamic pricing models with various behavioral phenomena. These

include: regret in Nasiry and Popescu (2012), anecdotal reasoning in Huang and Liu (2014), uncer-

tain product value in Swinney (2011), stockpiling and inertia in Su (2010), Su (2009), probability

mis-perception in Özer and Zheng (2014), as well as the “standard” loss-aversion, risk-aversion

and reference dependence, e.g., Popescu and Wu (2007), Liu and van Ryzin (2008), Tereyagoglu

et al. (2014). The innovativeness of our approach is that we study a more basic question of how

consumers decide to wait or buy, and from that derive the resultant behavioral model, in addi-

tion to studying the impact of such a behavior. Our paper also adds to the empirical literature

on strategic consumers, e.g., Mak et al. (2014), Kim and Dasu (2014), Li et al. (2014), Osadchiy

and Bendoly (2010). But rather than using the experiment to substantiate the model, our experi-

ment only parameterizes the model that is developed based on the existing evidence of behavioral

anomalies.

2. The DEU Model and the Behavioral Anomalies it Fails to Explain

The existing literature on markdown management (e.g., Besanko and Winston 1990, Aviv and

Pazgal 2008, Liu and van Ryzin 2008, Zhang and Cooper 2008) uses the discounted expected utility

(DEU) model to solve the wait-or-buy problem. Let u denote the willingness to pay in the ‘buy

now’ case, which we call the benefit of consumption. By default, ‘buy now’ ensures the purchase.

According to DEU, to ‘opt out’ yields 0 utility, ‘buy now’ yields u− p, and ‘wait’ yields

U(p, d, q, t) = [u− p(1− d)] q e−rt. (1)

Here, r > 0 denotes the time discount rate. According to DEU, the consumer will opt-out if u <

p(1− d), wait if p(1− d)≤ u<HDEU , and buy now if u≥HDEU , where

HDEU = p · 1− (1− d)qe−rt

1− qe−rt
.

2 http://pages.stern.nyu.edu/∼adamodar/New Home Page/datafile/margin.html



Baucells, Osadchiy, Ovchinnikov: Behavioral Anomalies in Wait-or-Buy Decisions 5

The solution is intuitive: if u is high, the penalty for availability risk and/or discounting is higher,

prompting the consumer to buy now. Moreover, the higher the price discount, the more attractive

is to wait, but this attractiveness is dampened if either t is large or q is small. Finally, HDEU ≥ p

because for consumers with p(1− d)≤ u< p the only profitable option is to wait.

We believe that DEU is directionally correct – individuals like price discounts and dislike avail-

ability risk and delay. But DEU fails to account for three behaviorally important effects.

The first is the common ratio effect in risk preferences, by which the effect of the probability q

is not linear in the mind of the consumer. A 20% change in the probability of the product being

available from 100% to 80% has a much higher relative impact than the same 20% change from

50% to 40%. People seem to be less sensitive to probability ratios when probabilities become small.

The following example may clarify. Consider two stores. The product is offered in store A with

no discount and 100% availability, and in store B with a discount of 30% and availability risk

80%. According to DEU, if the consumer is indifferent between A and B, then he should also be

indifferent between C and D, where ‘C: no discount and 50% availability risk’ and ‘D: 30% discount

and availability risk of 40%’. Intuitively, and experimentally, many subjects prefer D to C.

The second is the common difference effect in time preference (a.k.a., hyperbolic discounting).

Changing the delay from 0 (no delay) to 7 days has a higher relative impact that a change from

21 days to 28 days. People seem to be less sensitive to delays when consequences are far into the

future. Consider two options. Option A is to buy the product now at no price discount, and option

B is to buy the product one weeks later at a price discount of 20%. Assume the product is available

for sure in all options. According to DEU, if the consumer is indifferent between A and B, then he

should also be indifferent between C and D, where ‘C: buy in three weeks at no discount’ and ‘D:

buy in four weeks at a 20% discount’. Intuitively, and experimentally, people prefer D to C.

The third effect is known as the magnitude effect in time preferences. The benchmark model

assumes that the time discount rate, r, is a fixed parameter. There is an abundant evidence that

the degree of impatience is higher for small consequences than it is for large consequences (Thaler

1981, Frederick et al. 2002). Baucells and Heukamp (2012) propose a preference condition, called

subendurance, that captures the following preference. Most individuals seem to prefer ‘A: a gain of

$20 now with 50% chance’ to ‘B: a gain of $20 in six months for sure’, but when considering the

same decision with higher stakes, namely ‘C: a gain of $1,000 now with 50% to chance’ or ‘D: a

gain of $1,000 in six months for sure’ they reverse their choice and prefer D to C.

Table 1 shows experimental evidence for these three anomalies. Pattern 1-2 replicates the com-

mon ratio effect, a violation of proportionality. Pattern 3-4 reproduces the common difference
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effect, a violation of stationarity. These two effects are at the core of a considerable literature on

non-linear probability weighting (Allais 1953, Wakker 2010) and hyperbolic discounting (Laibson

1997, O’Donoghue and Rabin 1999, DellaVigna and Malmendier 2004). Choices 5 and 6 reflect the

pattern of subendurance.

Prospect A v. Prospect B Response N

1. (9 e, for sure, now) v. (12 e, with 80%, now) 58% v. 42% 142

2. (9 e, with 10%, now) v. (12 e, with 8%, now) 22% v. 78% 65

3. (100 fl, for sure, now) v. (110 fl, for sure, 4 weeks) 82% v. 18% 60

4. (100 fl, for sure, 26 weeks) v. (110 fl, for sure, 30 weeks) 37% v. 63% 60

5. (5 e, for sure, 1 month) v. (5 e, with 90%, now) 43% v. 57% 79

6. (100 e, for sure, 1 month) v. (100 e, with 90%, now) 81% v. 19% 79

Table 1 Rows 1-2 are taken from Baucells and Heukamp (2010, Table 1). Rows 3-4 are taken from Keren and

Roelofsma (1995, Table 1) (1 fl or Dutch Gulden in 1995 = $0.6). Rows 5-6 from Baucells et al. (2009).

The DEU benchmark is highly incompatible with these patterns. Indeed, pattern 1-2 is incompat-

ible with linear probability weighting, and pattern 3-4 is incompatible with exponential discounting

(Baucells and Heukamp 2012, Proposition 1). Pattern 5-6 requires that time discounting be affected

by the outcome dimension.

Our goal is to propose a modification of DEU that better approximates how individuals feel

about the trade-offs between price, price discounts, probabilities, and delays (i.e., all the patterns

in Table 1). In what follows, rather than guessing a utility model, we will propose preference

conditions characterizing such a model.

Our model rests on the axiomatic preference framework of Baucells and Heukamp (2012). Same

as they do, we assume that the risk and time distances, ln1/q and t, are substitutes; that their

“exchange rate” r may depend on the outcome; and that individuals exhibit diminishing sensitivity

to distance, i.e., the probability and delay penalty is a concave function of ln 1/q+r ·t. This captures

the certainty/immediacy effect and the possibility effect (a.k.a., the long-shot bias) (Kahneman

and Tversky 1979). That is, consumers are disproportionally sensitive to a small change from full

and immediate availability to partial availability or small delay. On the flip side, consumers are

less sensitive to additional delays, or increases in availability risk, if the prospect is in the future

or not certain to begin with.

In our setup, the outcome has two dimensions: price and price discount. We will assume that

it is the price discount that drives the subendurance effect. Simply put, consumers will be more

patient if the price discount is high, which will imply that r is a decreasing function of d. This
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assumption is consistent with Kahneman and Tversky (2000)’s observation that individuals are

willing to travel 10 minutes to grab a 33% price discount on a calculator that costs $15, but not

willing to travel the same 10 minutes to grab a 5% price discount on a jacket that costs $100. That

the dollar discount is the same, $5, shows that what drives the customer acceptance of the delay

of 10 minutes depends on the price discount percentage, not the dollar value. The assumption is

psychologically plausible, as the price discount d is a number that is comparable across purchases.

3. Price Discount, Probability, and Time Tradeoff

In this section we propose a set of axioms that characterize a preference relation capable of explain-

ing the behavioral anomalies described above. Let τ denote the current calendar date. At time

τ , the consumer exhibits preferences between pairs in Xτ = [0,∞)× [0,1]× [0,1]× [τ,∞], where a

typical element will be written as x= (px, dx, qx, tx) ∈X . Here, px represents the tag price, dx the

price discount, qx the probability of the good being available, and tx ≥ τ is the purchase date. Each

consumer desires one item. The benefit of consumption does not depend on τ . Note that we allow

for tx =∞ (never). The availability of the item is revealed at time tx.

A word on notation. We write (d,x−d) or (q, t, x−qt) to denote the vectors (px, d, qx, tx) or

(px, dx, q, t), respectively. Throughout, ‘decreasing’ implies ‘non-increasing’, and we use ‘strictly

decreasing’ otherwise. Same holds for ‘increasing’ or ‘concave’. Throughout, the time and risk

distance of x is tx and ln1/qx, respectively. Finally, we let 0 = (0,0,0,0).

3.1 Axioms

Let �τ denote a preference ordering over pairs in Xτ as expressed by a consumer from the point

of view of the current calendar time τ . The first four and the last axiom are technical in nature.

Axioms 5 to 7 capture the behavioral anomalies in preferences. Our first axiom will guarantee the

existence of a continuous function, Vτ (p, d, q, t), that represents such preferences.

A1. For each τ ≥ 0, �τ is a complete and continuous ordering over Xτ .

The next axiom states that preferences are not a function of calendar time, but a function of

time relative to τ . It translates reference-dependence (outcomes are not evaluated in absolute, but

relative to a reference point) into the time dimension.

A2. Time invariance. ∀x, y ∈X, 0≤ τ ≤ tx, ty, and ∆≥ 0,

x∼τ y if and only if (tx + ∆, x−t)∼τ+∆ (ty + ∆, y−t).

Time invariance implies that Vτ (p, d, q, t) = V0(p, d, q, t− τ). Hence, specifying the preferences from

the viewpoint of τ = 0 automatically determines the preferences from all time viewpoints. Hence-

forth, when we omit the subscript τ from X , V , and � it means that τ = 0.
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Next, we impose monotonicity and solvability conditions. Null purchases, those having q = 0 or

t=∞ are interpreted as no purchases and are deemed indifferent. The directional effects of price,

price discounts, time, and probability are the same as in DEU. Finally, while the item is desirable

for free, there is a finite price one is willing to pay.

A3. Monotonicity and Solvability. Let X 0 = {x∈X : qx = 0 or tx =∞}. For all x∈X ,

A3.0 if x∈X 0, then x∼ 0.

A3.p let p < px. If x /∈X 0, then (p,x−p)� x.

A3.d let d> dx. If x� 0, then (d,x−d)� x.

A3.q let q > qx. If x� 0, then (q,x−q)� x; and if x≺ 0, then (q,x−q)≺ x.

A3.t let t < tx. If x� 0, then (t, x−t)� x; and if x≺ 0, then (t, x−t)≺ x.

A3.u there exist a u∈ (0,∞) such that (u,0,1,0)∼ 0.

Because A3.u is imposed for immediate sure purchases with no price discount, u does not depend

on the dimensions of x, but only on the item itself. By time invariance, u does not change with the

passage of calendar time.

Next, we assume that, for immediate purchases, price and price discount are rationally encoded

in a way that only the effective price matters.3

A4. Effective Price Condition. For all x, y ∈X such that qx = qy and tx = ty = 0,

x� y if and only if px(1− dx)≤ py(1− dy).

The next condition links risk and time preferences (Baucells and Heukamp 2012).4 The condition

captures the psychologically intuitive notion that “time is intrinsically uncertain”. Intuitively, if

a delay of ∆ = 1 month is exchangeable with a probability factor of θ = 80%, then a delay of

∆ = 2 months is exchangeable with a probability factor of θ2 = 64%, and this exchange holds

independently of the base level of time and probability. For any delay ∆ > 0, one can find a

reduction in probability θ < 1 (without the delay) that offsets the effect of ∆. The condition states

is that once this trade-off is established at some probability and time base levels, it holds for all

probability and time base levels as well as all price levels. The condition does not extend to different

price discounts because the probability and time trade-off may depend on dx.

3 The condition precludes framing effects, i.e., changes in preferences associated with increasing the tag price and the
price discount simultaneously while keeping the same effective price. The condition is imposed only on immediate
purchases and may not hold for delayed purchases.

4 Time preferences are often stated by means of a trade-off between a delay and an improvement in some outcome
dimension. The outcome dimensions (e.g., income, consumption, or a multi-attribute description of a consequence),
however, varies from problem to problem. Because probability and time are dimensions of almost any decision, the a
trade-off between a delay and an improvement in probability is a more portable frame.
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A5. Probability and time trade-off. ∀x∈X , p≥ 0, θ, q ∈ [0,1] and ∆, t∈ [0,∞],

(px, dx, qx, tx + ∆)∼ (px, dx, qxθ, tx) if and only if (p, dx, q, t+ ∆)∼ (p, dx, qθ, t).

The indifference in A5 allows us to define the exchange rate between probability and time,

r(d) =
1

∆
ln

1

θ
.

By A5, r(d) does not depend on q, t, and p, but may depend on the price discount (not so in the

case of DEU). The exchange rate, r, will be called the probability discount rate.

A5 is compatible with, but logically independent from, the three preference patterns exhibited

in Table 1. To explain pattern 5-6 it is necessary to let the probability discount rate depend on

the outcome dimension. In order to reduce degrees of freedom, and as explained in §2, we assume

that what drives probabilistic patience is the price discount only.

A6. Price Discount Subendurance. ∀x∈X , θ ∈ [0,1), ∆∈ [0,∞], and d> dx,

if x� 0 and (tx + ∆, x−t)∼ (qxθ,x−q), then (px, d, qx, tx + ∆)� (px, d, qxθ, tx).

if x≺ 0 and (tx + ∆, x−t)∼ (qxθ,x−q), then (px, d, qx, tx + ∆)� (px, d, qxθ, tx).

A6 implies that individuals become more patient for higher price discounts, i.e., r(d) is decreasing in

d. This also ensures that a higher price discount makes an attractive product even more attractive.

The following axiom considers patterns 1-2 and 3-4. The first condition captures the common

ratio effect (a reduction in probabilities makes the prospect with the better outcome more attrac-

tive). The second condition captures the common difference effect (a delay makes the prospect

with the better outcome more attractive). Both conditions reflect a loss of sensitivity when risk

distance and time distance are increased.

A7. Sub-proportionality and Sub-stationarity.

A7.p Let x, y ∈X with qx ≤ qy, tx = ty. For all θ ∈ [0,1],

if x∼ y� 0 then (θqy, y−q)� (θqx, x−q); and

if x∼ y≺ 0 then (θqy, y−q)� (θqx, x−q).

A7.t Let x, y ∈X with tx ≥ ty, dx ≥ dy, and qx = qy. For all ∆≥ 0,

if x∼ y� 0 then (ty + ∆, y−t)� (tx + ∆, x−t); and

if x∼ y≺ 0 then (ty + ∆, y−t)� (tx + ∆, x−t).
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If we strengthen A7 by implying indifference, then we obtain Proportionality and Stationarity,

respectively. Proportionality and stationarity are the essence of DEU, but have been disconfirmed

numerous times in experiments. The ‘sub’ conditions are behaviorally more plausible.

Our final axiom produces a simple structure by assuming separability between the price and the

probability dimensions, but only for prospects received now at no discount.5

A8. Restricted Probability-Price separability. For all x ∈X with tx = 0 and dx = 0, p, p′, p′′ ≥ 0,

q, q′, q′′ ∈ [0,1], if three of the following indifferences holds, the fourth one holds as well.

(p, q′, x−pq)∼ (p′, q, x−pq) (p′, q′, x−pq)∼ (p′′, q, x−pq)

(p, q′′, x−pq)∼ (p′, q′, x−pq) (p′, q′′, x−pq)∼ (p′′, q′, x−pq)

3.2 Representation

A1-A8 is our complete list of axioms. The representation that follows [x�τ y iff Vτ (px, dx, qx, tx)≥

Vτ (py, dy, qy, ty)] will involve three continuous functions: a value function, v : R → R+, strictly

increasing and with v(0) = 0; a psychological distance function, s : R+ → R+, strictly increasing

with s(0) = 0, s(1) = 1, and s(∞) =∞; and a probability discount function, r : [0,1]→ (0,∞).

Proposition 1. �τ on Xτ satisfies A1-A8 if and only if, for some value function, v, two con-

cave psychological distance functions, s+ and s−, and some decreasing and bounded probability

discount function, r,

Vτ (p, d, q, t) =

v(u− p(1− d)) · e−s+(σ), u− p(1− d)≥ 0

v(u− p(1− d)) · e−s−(σ), u− p(1− d)< 0,
(2)

where σ= ln1/q+ r(d)(t− τ) is the psychological distance of the prospect (p, d, q, t)∈Xτ .

All proofs are presented in the Appendix. We call (2) the dPTT model, for (price) discount-

probability-time trade-off. The model builds on the three behavioral patterns of Table 1 via axioms

A6 and A7. We remark several properties of the representation.

1. dPTT collapses into DEU if v, s+, and s− are the identity function and r(d) is set constant.

2. For immediate purchases, (2) agrees with a prospect theory like formulation in which v is a

value function and w(q) = e−s(− ln q) is a sub-proportional probability weighting function.

3. For future purchases with no availability risk, (2) agrees with a hyperbolic discounting model

in which f(t) = e−s(t) is a sub-stationary time discount function.

5 A8 is known as the hexagon condition, and it is a specialization of the corresponding trade-off condition (Keeney and
Raiffa 1976, Theorem 3.2) for the case of two attributes. Karni and Safra (1998) shows that the hexagon condition
is equivalent to the Thomsen condition.
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4. The list of axioms could be shorter. Intuitively, if individuals exhibit diminishing sensitivity to

risk distance (A7.p), and risk and time distance are substitutes (A5), then they should exhibit

diminishing sensitivity to time distance (A7.t). Also, monotonicity with respect to price dis-

counts (A3.d) follows from monotonicity with respect to price and the effective price condition.

Proposition 2. A3.d and A7.t are implied by the rest of conditions in A1-A7.

5. dPTT possesses a minimum of time consistency. For instance, null purchases will be deemed

indifferent both at τ = 0 and at any subsequent time τ > 0. Moreover, with the passage of time,

favorable deals will remain favorable; and unfavorable deal will remain unfavorable. Importantly,

if a product is attractive today, but the consumer decides to wait, then the product will remain

attractive in the future upon learning that the product is available.

Proposition 3. Assume A1-A4 and let 0τ = (0,0,0, τ).

• If x∼ 0, then x∼τ 0τ ; if x�0 0, then x�τ 0τ ; and if x≺0 0, then x≺τ 0τ , τ ≤ tx.

• If (p, d′, q, t)�0 (p, d,1,0)�0 0 and d′ ≥ d, then (p, d′,1, t)�t 0t.

6. The term s(ln1/q + r(d)t) implies that risk and time distance are substitutes, and that indi-

viduals exhibit diminishing sensitivity to distance (of either type). Thus, adding distance (of

either type) reduces sensitivity to additional distance (of either type). This observation affects

our markdown problem as follows: because the option of waiting always exhibits time distance,

individuals will not be very sensitive to probability reductions, even for q close to one.6

3.3 Parametric dPTT model

Because the consumer can opt-out from undesirable prospects, there is no point in modeling how

much negative utility they produce. Henceforth, we restrict attention to desirable prospects, u≥

p(1−d), and omit the superscript ‘+’ from s. To gain tractability and further proceed with studying

the markdown management problem we adopt the following parametrized form:

• For v, we adopt v(u− p(1−d)) = u− p(1−d). This linear form is widely used in management

science and economics models.

6 That risk and time distance are substitutes yields two nontrivial predictions, namely, that the common ratio effect can
be reproduced by adding a common delay to both options; and that the common difference effect can be reproduced
using a common probability reduction for both options. Intuitively, both manipulations increase the distance σ =
ln 1/q+ r(d)t, and because s(σ) is concave, induce loss of sensitivity with respect to either probability or time and
make the payoff dimension more salient. In particular, adding a common delay of 3 months to choice 1 in Table 1
would produce a reversal. Indeed, Baucells and Heukamp (2010, Table 1) show that only 43% of subjects prefer (9
e, for sure, 3 months) to (12 e, with 80%, 3 months). Similarly, adding a common reduction of probability to choice
3 in Table 1 would produce a reversal. Indeed, Keren and Roelofsma (1995, Table 1) show that only 39% of subjects
prefer (100 fl, with 50%, now) to (110 fl, with 50%, 4 weeks).
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• For s, we adopt s(σ) = σβ, 0<β ≤ 1. This power form is associated with Prelec (1998)’s prob-

ability weighting function, w(q) = e−(− ln q)β and Ebert and Prelec (2007)’s time discount functions,

f(t) = e−(t)β . These specifications of w and f fit the experimental data quite well (Ebert and Prelec

2007, Booij et al. 2010) in the risk-only and time-only domains, respectively.

• For r(d), which is new in the literature, we propose the bounded and decreasing form

r(d) = ρ eµ(d0−d), ρ > 0, µ≥ 0, d0 ∈ [0,1].

The parameter µ captures subendurance, and the higher the µ, the more impatience with respect

to small price discounts. The parameter d0 represents the reference discount around which sub-

endurance emerges. That is, the sub-endurant dPTT consumers (with µ > 0) are less patient for

discounts less than d0 and more patient for discounts over d0. The parameter ρ represents the

“baseline” time discount rate without subendurance: i.e., that of a DEU decision maker (with

µ= 0), or equivalently, that of a dPTT decision maker facing a price discount of d0.

The resulting model, named the parametric dPTT model, is given by:

Vτ (p, d, q, t) = [u− p(1− d)] · exp

{
−
(

ln
1

q
+ ρ eµ(d0−d) (t− τ)

)β}
, (3)

with u≥ p(1− d), β ∈ (0,1], ρ > 0, d0 ∈ [0,1], and µ≥ 0. Setting β = 1 and µ= 0 yields the DEU

model. Values of β less than one will induce diminishing sensitivity to risk and time distance; and

values of µ> 0 will induce more patience when price discounts increase.

4. Wait or Buy Decisions Under the dPTT Model

We turn our attention to a market environment in which numerous consumers with dPTT prefer-

ences best-respond to a selling mechanism designed by the retailer.

4.1 The Selling Mechanism

The game involves one retailer (seller) and a continuum of consumers with a total mass of λ > 0.

Consumers exhibit identical dPTT parameters, and differ only on the benefit of consumption u.

The value of u is a private information drawn independently from a distribution with cdf F (u). We

assume that F is continuous with support [0, ū], ū > p. Without loss of generality, we normalize

the economy to ū= 1. Both λ and F are common knowledge. Throughout, F̄ denotes 1−F and

U [0,1] denotes a uniform distribution.

The retailer is endowed with an initial inventory Q of a homogeneous, perishable and infinitely

divisible product that cannot be replenished and needs to be depleted over a two period selling

season. Without loss of generality, we let time 0 be period 1 and some exogenously given t > 0
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be the ‘markdown’ period 2. At time 0 (the beginning of period 1) the product is priced at the

(exogenously given) tag price p ∈ [0,1], and the retailer’s markdown management problem is to

decide on the discount percentage d ∈ [0,1] to be applied to all units of unsold inventory at time

t, i.e., in period 2. That is, the retailer commits to d in period 1, a typical assumption in dynamic

pricing literature, e.g., Aviv and Pazgal (2008), Liu and van Ryzin (2008).

At the beginning of period 1 each consumer observes (Q,p, d) and chooses to either ‘opt-out’,

‘wait’ until time t and buy at price p(1− d) but face availability risk, or ‘buy now’ at price p. All

consumers act simultaneously and do not observe each other’s choices – a Nash game. Let λ1 and

λ2 be the mass of consumers who decide to ‘buy now’ and ‘wait’, respectively.

Clearance is modeled as an instantaneous event and calculated using a fluid model.7 If λ1 ≤Q,

then all consumers who ‘buy now’ do so at price p. If λ1 >Q, then units are allocated following

a lottery with each customer having equal probability of receiving an item (a proxy for random

arrivals and first-come, first-served allocation). The remaining inventory is for those customers who

choose to ‘wait’. As before, the probability of obtaining an item in period 2 at price p(1− d) is

the inventory that remains available divided by the number of consumers that decided to wait. In

summary, the probability of obtaining the item in period 1 and 2, respectively, is equal to

q1 = min

(
Q

λ1

,1

)
and q2 = min

(
max(Q−λ1,0)

λ2

,1

)
(4)

if λ1 > 0 and λ2 > 0; and equal to the limit of these expressions when λ1→ 0 and λ2→ 0 otherwise

(i.e., equal to zero if there is no quantity available, and equal to one otherwise). Observe that

customers in period 1 have priority, leading to q1 ≥ q2 and (1− q1)q2 = 0 (if q1 < 1, then q2 = 0).

Note that consumers in our model are assumed to have no mis-perception of the probability of

availability; this is a qualitative difference between our paper and Özer and Zheng (2014) where

consumers “cannot correctly perceive the availability of the product in the future”. The behavioral

anomalies therefore impact the markdown management problem through the dPTT function V .

The payoffs of a u-consumer associated with ‘opt out’, ‘wait’, and ‘buy now’, respectively, are

V0(p,0,0,0) = 0,

V0(p, d, q2, t) = [u− p(1− d)] e−s(ln 1/q2+r(d)t), and

V0(p,0, q1,0) = [u− p] e−s(ln 1/q1).

7 The fluid model is a limiting case of multiple probabilistic demand when the demand rate and capacity proportionally
grow large (Maglaras and Meissner 2006).
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All payoffs are calculated from the point of view of time 0, when the decision is made. Proposition

3 assures us that every consumer who found the item attractive in period 1 still finds it attractive

in period 2. Hence, those that waited will indeed carry out the purchase.

The payoff for the retailer is given by the expected revenue (we neglect production costs which

are already incurred, and the time value of money between period 1 and 2):

R= p ·min{λ1,Q}+ p(1− d) ·min{λ2,max(Q−λ1,0)}. (5)

Structurally, the selling mechanism is that of a Stackelberg game, with the retailer being the

leader and the consumers being the followers. As is common in the analysis of such games, we first

discuss the reaction of the followers, and then in §5 discuss the problem of the leader.

4.2 Consumer’s Best Response and Nash Equilibrium

Suppose a u-consumer observes (Q,p, d). How should she react? We show that the best response

can be characterized by a threshold H ∈ [p,1].

• If 0≤ u< p(1− d), then ‘opt-out’ is a dominant strategy (buy is never profitable).

• If p(1− d)≤ u< p, then ‘wait’ is a dominant strategy (‘buy now’ is never profitable).

• If p ≤ u ≤ 1, then the consumer needs to form some expectation of q1 and q2. For any such

expectation, note that both V0(p, d, q2, t) (‘wait’) and V0(p,0, q1,0) (‘buy now’) are linear functions

of u, with the ‘wait’ payoff having smaller slope and higher intercept. Hence, there is a unique

threshold H ∈ [p,1] such that the consumer will wait if p(1−d)≤ u≤H, and buy now if H <u≤ 1.

Next, we conjecture the existence of, and restrict attention to, a symmetric equilibrium in pure

strategies in which all consumers use the same threshold H ∈ [p,1]. To characterize equilibrium we

assume that all consumers use H ∈ [p,1]; calculate any one consumer best response by means of

the threshold B(H) ∈ [p,1]; and impose the equilibrium condition B(H) = H. We denote by H∗

any such solution. We begin with calculating B(H).

Proposition 4. Assume all consumers use the threshold H. Then,

λ1 = λF̄ (H) and λ2 = λ(F (H)−F (p(1− d))). (6)

The best response of any one consumer is to opt out if u< p(1−d), to wait if p(1−d)≤ u≤B(H),

and to buy if u>B(H), where

B(H) = min

{
p · e

−s(ln 1/q1)− (1− d)e−s(ln 1/q2+r(d)t)

e−s(ln 1/q1)− e−s(ln 1/q2+r(d)t)
,1

}
, (7)

and q1 and q2 are as in (4). Moreover, B(H) is increasing in H.
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Because B(H) : [p,1]→ [p,1] is a continuous mapping from a closed and convex set into itself, it

admits at least one fixed point, B(H∗) =H∗, ensuring that a symmetric equilibrium in pure strate-

gies exists.8 The existence of a pure strategy equilibrium is crucial. The definition and existence of

equilibrium in mixed strategies would be quite problematic in our setup because consumers treat

probabilities in a non-linear fashion. We thus restrict analysis to pure strategies only.

That B(H) is increasing in H hinges on the positive externality: the more customers that ‘wait’,

the higher the product availability in period 2. That dq2/dH > 0 is a bit counterintuitive at first,

but quite clear on hindsight. Consider a small increase in H, i.e., a few consumers switch from ‘buy

now’ to ‘wait’. Some units that would have been purchased with probability q1 are now purchased

with probability q2 ≤ q1. On a first-order approximation, the demand in period 2 increases by q2,

the supply increases by q1 ≥ q2, and the net effect is an increase in the availability.

We distinguish three regimes, depending on the abundance of supply. In the first regime all

customers purchase with probability one. In the second regime, there is only rationing among those

that decide to wait. In the third regime, all customers may experience rationing. The following

result establishes this claim and characterizes equilibrium in each regime.

Proposition 5. Given (λ,F ) and (Q,p, d), there are three regimes:

I. Abundant supply. If Q≥ λF̄ (p(1− d)), then q1 = q2 = 1, and the best response threshold is

constant for all H and given by

B= min

{
p · 1− (1− d)e−s(r(d)t)

1− e−s(r(d)t)
,1

}
. (8)

There is a unique equilibrium given by H∗ =B> p.

II. Intermediate supply. If λF̄ (p) < Q < λF̄ (p(1− d)), then q1 = 1, q2 ∈ (0,1), and the best

response threshold is given by9

B(H) = min

{
p · 1− (1− d)e−s(ln 1/q2+r(d)t)

1− e−s(ln 1/q2+r(d)t)
,1

}
. (10)

There is at least one equilibrium solving B(H∗) =H∗ > p.

III. Limited supply. If Q≤ λF̄ (p), then B(H) = p on H ∈ [p,F−1
(
1− Q

λ

)
]. We have that H∗ = p

is always an equilibrium, but other equilibria with H∗ > p may exist.

8 We verify that B(H)∈ [p,1]. Moreover, λ1, λ2 are continuous functions of H, and q1 and q2 are continuous functions
of λ1 and λ2, respectively.

9 The equilibrium condition, B(H) =H, can be rewritten as the fixed point problem:

q2 = 1− λF̄ (p(1− d))−Q
λF̄ (p(1− d))−λF̄

(
p · 1−(1−d)e−s(ln 1/q2+r(d)t)

1−e−s(ln 1/q2+r(d)t)

) , 0≤ q2 ≤ 1. (9)
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Note that B(H) = p if and only if q2 = 0. Thus, the equilibrium H∗ = p, implies a congestion

of ‘buy now’ customers facing q∗1 = Q/λF̄ (p) ≤ 1, and those that must wait face q∗2 = 0. Any

equilibrium with H∗ > p exhibits q∗1 = 1 and q∗2 > 0. Still, if the price discount is small, d→ 0, or

the future is far, r(d)t→∞, then B→ p and the equilibrium is eventually unique and close to p.

4.3 Uniqueness and Equilibrium Selection

A general condition for equilibrium uniqueness is B′(H)< 1 at all points where B is differentiable.

This condition is trivially met if the supply is abundant (B is constant). The condition is also met if

the supply is intermediate but close to abundant. Indeed, as (17) shows, dq2/dH, and hence B′(H),

is proportional to (λ2 +λ1−Q). Hence, if Q→ λF̄ (p(1−d)) = λ1 +λ2, then q2 becomes insensitive

to H, B(H) is quite flat, and the equilibrium unique. That B(H) is relatively flat reduces the

strategic burden on our consumers.

If the supply is not close to abundant, however, q2 might be quite sensitive to H and the

equilibrium might not be unique. Lack of uniqueness is not due to behavioral effects. Osadchiy and

Vulcano (2010) and more recently Correa et al. (2011) observe multiple equilibria under DEU and

provide sufficient conditions for uniqueness. The following examples show multiplicity of equilibria

under DEU and dPTT. Throughout, we set λ= 1, F ∼Beta(0.6,0.6), p= 0.6 and d= 0.8.

Example 1. DEU consumers [β = 1, µ= 0, ρ= 0.15]. If supply is intermediate, Q= 0.45, then

B(H) =H admits three solutions, namely, H∗1 = 0.765, [q1 = 1 and q2 = 0.30], H∗2 = 0.961, [q1 = 1

and q2 = 0.50]; and H∗3 = 1 [q1 = 1 and q2 = 0.56].

Example 2. DEU consumers with no discounting [β = 1, µ = 0, ρ = 0]. If supply is limited,

Q = 0.4, then B(H) = H admits three solutions, namely, H∗1 = p = 0.6, [q1 = 0.94 and q2 = 0],

H∗2 = 0.964, [q1 = 1 and q2 = 0.43]; and H∗3 = 1 [q1 = 1 and q2 = 0.50].10

Example 3. dPTT consumers with no discounting [β = 0.6, µ= 0, ρ= 0]. If supply is limited,

Q = 0.4, then B(H) = H admits three solutions, namely H∗1 = p = 0.6 [q1 = 0.94 and q2 = 0],

H∗2 = 0.643 [q1 = 1 and q2 = 0.01], and H∗3 = 0.789 [q1 = 1 and q2 = 0.23].

When the supply is not abundant and the game admits multiple equilibria, the game becomes one

of coordination. Indeed, all equilibria can be Pareto ranked according to H∗, and the equilibrium

with highest H∗ is Pareto dominant. Recall that q2 increases with H. Intuitively, the equilibrium

with highest q∗2 improves the payoff of those who always wait, and leaves unaffected (under inter-

mediate supply) or may improve (under limited supply) the payoff of those who always buy now.

10 Under DEU and limited supply, H∗ = 1 can be an equilibrium if 1−p
1−p(1−d) ≤ e

−ρt Q
λF̄ (p(1−d)) . The more patient the

consumers, the more likely this condition will be met. This same condition is not sufficient under dPTT, as Example
3 illustrates, but the intuition that patience fosters more waiting still holds.
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Naturally, our selection criteria in the presence of multiple equilibria is to choose the one with

highest H∗.

Proposition 6. Let H∗ and H ′∗ be two equilibria. If H∗ >H ′∗, then H∗ Pareto-dominates H ′∗.

We verify that the equilibria of the fluid model are good approximations of the equilibria of a

stochastic demand model. To do so, we numerically analyzed a stochastic demand model (approxi-

mating the fluid model), in which the total number of customers is a Poisson random variable with

rate λ. In that model, iterative calculations of the best response rapidly converge to a fixed point.

The difference between the buy-now equilibria thresholds computed under the stochastic and fluid

models diminishes as the demand and capacity are scaled up.

5. Markdown Management

Following the usual approach for analyzing Stackelberg games, we have assumed so far that the

triplet (Q,p, d) is fixed, and studied equilibrium consumer behavior under dPTT. We have shown

that a symmetric equilibrium exists, it is often unique, or otherwise there is unique Pareto-dominant

equilibrium. Henceforth, for given parameters (β,ρ,µ), we consider the mapping H∗(A) : [0,Q]×

[0,1]× [0,1]→ [p,1], which associates the unique Pareto-dominant equilibrium to each (Q,p, d).11

In view of (5) and (6), the goal of the seller is to find the selling arrangement that maximizes

R(H∗) = p ·min{λF̄ (H∗),Q}+p(1−d) ·min{λ(F (H∗)−F (p(1−d))),max(Q−λF̄ (H∗),0)}. (11)

We will compare the equilibrium associated with (β,ρ,µ) (denoted by HdPTT ) with the equilib-

rium associated with (1, ρ,0) (denoted by HDEU). In particular, we will analyze the best response

of the seller to each type of consumers.

Intuitively, the seller wants to be in the region of intermediate supply, or its frontiers, but not in

the interior of regimes I and III. On the limited supply side, the seller will surely avoid a situation

resulting in q∗1 < 1. The seller can consider multiple options, but one that will surely increase

revenue is to increase prices, and offer no discounts, until the demand equals to supply.12 On the

abundant supply side, it might be optimal to set Q = λ1 + λ2, but not to increase the quantity

beyond this point; equivalently, the retailer may perish the excess inventory if it is priced so high

11 The mapping is continuous whenever the equilibrium is unique. It ceases to be continuous if a new Pareto-dominant
equilibrium appears.

12 Formally, suppose thatH∗(Q,p, d) = p andQ<λF̄ (p) (i.e., q∗1 < 1 is the unique equilibrium). Let p′ = F−1(1−Q/λ).
It is not difficult to see that the combination A′ = (Q,p′,0) induces H∗(A′) = p′ as the unique equilibrium. Indeed, A′

results in Q= λF̄ (p′) and H∗(A′) = p′ (with no discount we have that B(H) is constant and the equilibrium unique).
Because in A′ the same quantity is sold at higher prices, we have that R(H∗(A′))>R(H∗(A)).
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that it will remain unsold anyway13. Clearly, no new customers are served and the revenues remains

the same. Thus the sellers best response is to be in the interior of the intermediate supply region,

or its frontiers.

Given Q and p the seller’s markdown optimization problem is to select d, that maximizes

RdPTT (Q,p) = max
d

{
pmin{λF̄ (HdPTT ),Q}

+p(1− d)min{λ(F (HdPTT )−F (p(1− d))), (Q−λF̄ (HdPTT ))+}
}
. (12)

To compare with DEU, we define

RDEU(Q,p) = max
d

{
pmin{λF̄ (HDEU),Q}

+p(1− d)min{λ(F (HDEU)−F (p(1− d))), (Q−λF̄ (HDEU))+}
}
. (13)

In both cases, of course, H is the equilibrium mapping associated with (Q,p, d).

We claim that the dPTT model yields larger markdowns at the optimum compared with the

DEU model. To substantiate this claim, the following proposition analytically proves this result

on a restricted part of the parameter space14, and the numerical illustrations that follow support

it for a broader range of parameter values.

Proposition 7. Assume u∼U [0,1], ρt < 1, and µ= 0. If Q>λ
(
1− 1

2
p(1 + e−ρt)

)
, then dDEU =

1
2
(1− e−ρt) and ∂RDEU

∂d
|d=dDEU = 0. However,

∂RdPTT

∂d
|d=dDEU > 0.

We complement this theoretical result with the numerical verification that ∂RdPTT

∂d
|d=dDEU > 0 for

(β,µ)∈ [0,1)× [0,6.5]. We consider an illustrative base case with λ= 1, u∼U [0,1], Q= 0.625, and

p= 0.5. The quantity Q ensures that the seller is in the abundant or intermediate supply regime.

We set the wait time until a markdown to t= 3, which corresponds to 9 weeks (meaning that a

unit of time is 3 weeks, which is an important element of our elicitation experiment, see §6). This

is consistent with Bils and Klenow (2004) who found the median price duration of 4.3 months (18

weeks) for a broad panel of consumer goods and services. We set the time discounting rate ρ= 0.13,

and the reference discount parameter d0 = 0.5 (see §6 for details). For the dPTT case we first use

parameters β = 0.9 and µ= 1.95 (observations i)-iv) below) and the extend the parameters study

region to (β,µ) ∈ [0,1]× [0,6.5] (observation v). Recall that the DEU model corresponds to β = 1

and µ= 0.

13 Formally, one can redefine our selling mechanism as if the retailer is endowed with Q̄ units of inventory, of which
it decides to perish Q̄−Q units and no extra cost or salvage value.

14 The assumption µ= 0 is required for tractability of the derivative bound. The assumption ρt < 1 is consistent with
the experimental data (see Baucells et al. 2009, and below).
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Figure 1 (a) Revenue, (b) Equilibrium threshold H and probability q2, (c) Buy-now λ1, buy-later λ2, and total sold

quantity as a function of markdown d, under dPTT (β = 0.9, µ= 1.95) and DEU models. Parameters:

Q= 0.625, p= 0.5, t= 3, λ= 1, u∼U [0,1], d0 = 0.5, and ρ= 0.13.

i) Optimal revenue under dPTT is greater than under DEU. Behavioral anomalies

featured in the dPTT model allow retailer to extract more revenue. In our example, the optimal

revenue under the dPTT model exceeds the optimal revenue under the DEU model by 4.1% (0.281

vs 0.270, Figure 1, a). Note that DEU benefits from price discrimination (the DEU revenue beats the

fixed price policy by 8%). Consumer impatience as characterized by ρ is crucial for retailer’s ability

to price discriminate. This is consistent with von der Fehr and Kuhn (1995) who found that retailer

must be more patient than consumers for effective price discrimination. Due to subendurance

consumers become more patient as d increases reducing effectiveness of price discrimination (see

thresholds HdPTT and HDEU , Figure 1, b). If d > 0.85 all consumers choose to wait under dPTT

and revenues decrease.

ii) Optimal markdown under dPTT is greater than under DEU. The higher revenue

under dPTT is due to more aggressive markdowns offered by dPTT than by DEU. While the DEU

achieves optimal revenue at 16.1% markdown, the optimal markdown under dPTT is 22.2%. In

both models optimal markdowns ensure that the probability of receiving an item in the second

period q2 = 1, i.e., every consumer with benefit of consumption u≥ p(1−d) receives an item (Figure

1, b). For both dPTT and DEU the optimal discount increases with consumer impatience.

iii) At the optimum dPTT sells more units at tag price than DEU. In our example the

buy-now threshold HDEU ≥HdPTT for levels of d≤ 0.53 (Figure 1, b). In that case, the number

of items sold at tag price (buy-now) is greater under the dPTT model. At the optimum, the

dPTT model sells 0.391 units (64%) at tag price and 0.220 units (36%) at discount. The respective

quantities for the DEU model are 0.332 units (57%) and 0.248 units (43.0%).

iv) dPTT sells more units in total than DEU. The total number of units sold by dPTT
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Figure 2 (a) Optimal discount, (b) Optimal revenue, (c) Revenue gain from incorporating the dPTT behavior as

a function of β and µ. Parameters: Q= 0.625, p= 0.5, t= 3, λ= 1, u∼U [0,1], d0 = 0.5, and ρ= 0.13.

is equal to the total number sold by DEU for the same discount level. However, given that dPTT

offers higher discount at the optimum, it also sells a larger number of products in total. In our

example dPTT sells 0.611 units while DEU sells 0.535 units (gain of 11.2%, Figure 1, c). Note that

under dPTT the seller could achieve the same revenue by stocking 0.611 units.

v) dPTT delivers higher revenue as consumers deviate more from rationality. We

investigate the effect of β and µ on the optimal discount and revenue. Recall, that the DEU

model corresponds to β = 1 and µ= 0, thus, β < 1 and µ> 0 are considered to be deviations from

rationality. We find that a larger deviation from rationality results in a greater discount and higher

revenue at the optimum. For example, if β = 0.5 and µ= 3, the optimum discount is 25% (Figure 2,

a) and the optimum revenue is 0.286 (Figure 2, b).15 If µ is small (corresponding to psychological

distance σ ≤ 1), deviations from rationality in β and µ complement each other, i.e., a deviation

in either parameter results in a higher revenue. However, if µ is large (corresponding to σ > 1), a

smaller deviation in β increases attractiveness of the buy-now option even further which in turn

drives revenue higher.

Correctly accounting for the dPTT behavior and incorporating it into pricing results in sub-

stantial revenue increase over using the traditional pricing models based on the DEU model. The

revenue gain can be as high as 3% in some cases (Figure 2, c).

The explanation for superior performance of the dPTT model lies in the decreasing sensitivity to

psychological distance (concave increasing s(σ)) and the subendurance effect (r(d), see §3). Around

zero, the sensitivity to psychological distance is high implying that customers who buy-now tend to

15 Compared with the β = 0.9, µ = 1.95 case, µ = 3 increases attractiveness of they buy-now option. The optimum
discount platoes at the inventory clearing level. Further increasing µ, the increase in revenue is due to the higher
fraction of buy-nows.
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keep their choice if markdown is increased, this effect becomes stronger if β is low. Subendurance

implies that r(d) is decreasing in d making customers more patient for large markdowns and less

patient otherwise, this effect is amplified by µ. Collectively this allows a retailer to offer higher

markdowns without suffering a loss in full price sales if consumers’ deviation from rationality is

substantial, i.e., if β is low and µ is high.

The practical importance of the above results, however, clearly depends on whether in reality β

is indeed sufficiently low and µ is sufficiently high. To shed light into that in the remainder of the

paper we describe a behavioral experiment that we used to estimate our model parameters and

consequently establish its practical significance.

6. Experimental Estimation of the dPTT Paremeters

The goal in this section is to estimate the dPTT model parameters. For baseline time discount

parameter we used ρ= 13% which is the average discount rate of 18% for monetary gains between

e50 and e100 from (Baucells et al. 2009) adjusted for the fact that a unit of time in their study

was a month and in ours it is 3 weeks (18× 3/4≈ 13). Interestingly, fitting the DEU model to our

wait-or-buy data also results in ρ= 13%. For the reference discount parameter we used d0 = 50%

which we obtained through an online survey with N = 32 student participants from Canada. We

asked them: “Think about an end-of-season sale (markdown) at a retail store – such as Boxing

day, for example. What is the percentage price discount that first comes to mind?” The average

response was 51%, both the mode and median were 50%. For the sensitivity to discount µ, and the

sensitivity to psychological distance β we conducted an experiment described below.

6.1 Design of the Experiment

To estimate these parameters, it suffices to collect consumer wait or buy choice data for various

discount levels d, and probabilities of product availability q. The dPTT model allows us to hold

the benefit of consumption u, the tag price p, and the time delay t constant.

The choice data can be collected in two ways. An intuitive approach is to collect the binary

choice data, i.e., present subjects with combinations of (d, q) and ask if they would buy or wait.

The challenge of this approach is that to have a good coverage of input parameter space each

subject would have to answer dozens of nearly identical questions, causing subjects fatigue and

dis-engagement, which are known to significantly lower the quality of elicitation. An alternative

approach is to use choice-lists, e.g., present subjects with blocks of questions each containing a

list of binary wait-or-buy questions for different values of q. d is held constant in each block, and

varied across blocks. Such an approach has been shown to increase the quality of elicitation in
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situations where there is an implicit indifference point (this will be shown for our data soon). See

the well-known paper by Holt and Laury (2002) for an example of using choice-lists, and see Bodily

and Pfeifer (2010) for an experimental illustration for how using choice-lists improves the quality

of elicitation when there exists an implicit indifference point.

In the experiment we set the benefit of consumption u = 250, and the tag price p = 200. The

time delay is set at three weeks, which we normalized as t= 1.

The buy later option was varied over a wide range of probabilities of product availability q =

10%,20%, . . .90% and discounts d= 5%,15%,25%,50%,75%. The selected discounts are based on

the evidence from Elmaghraby et al. (2014, Table 1) who documented that inventory liquidators

in practice recover 27± 5 cents on a dollar of tag price, hence discounts larger than 75% seem

ineffective. Thus, each subject saw five choice-list questions, one for each d, with nine q values

in each list. The five lists appeared in random order, see Figure 7 (a) in the appendix for the

screenshot.

As a reliability test, and after answering the choice lists, subjects answered five binary choice

questions, one from each choice list, drawn and ordered randomly as well, see Figure 7 (b).

To make the elicitation incentive-compatible we determined the payments using a standard ran-

dom incentive mechanism (RIS). Specifically, we implemented the Prior Incentive Scheme (Prince)

(Johnson et al. 2014). The Prince method refines the random incentive system, arguably first

suggested in Savage (1954), to improve incentive compatibility and reduce various problems in

preference elicitation that has been documented by previous researchers. RIS compensates subjects

according to the results from a scenario randomly chosen after an experiment has concluded. Under

the Prince method, the scenario for potential compensation is randomly assigned to a subject before

the experiment, but is unknown until conclusion of the experiment. The scenario is provided to the

subjects in a tangible/physical form (usually a sealed envelope), and subjects’ answers are framed

as instructions to the experimented about how to implement the real choice situation contained in

the envelope.

6.2 Subjects and Procedure

Subjects, 6416 business school students, were recruited through online system to participate in a

decision-making experiment that promised earnings of a minimum of $5 and a maximum of $200.

Upon arrival subject picked physical sealed envelopes and experimental instructions (see appendix).

The instructions contained the following description of the decision situation:

16 We have 45 (d, q) combinations, and we ensured that all 45 combinations were assigned to some subject’s envelope.
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Suppose that you went to a retail store and saw a product that you know you can

resell for $250 at any time. The product was priced at $200 (two hundred dollars),

so you picked the product from the shelf and were about to purchase. However, then

you started thinking that in three weeks from today this product may be marked down.

Thus the question was: should you buy the product now or wait for the markdown?

From reading the instructions subjects learned that the sealed envelopes contained two numbers:

markdown percentage and probability of product availability. They further learned that two of

them will be selected at the end of the experiment. The envelope of a selected subject will be

privately opened and the scenario in the envelopes will be played as per the choices she will make

during the experiment. That is, if in that scenario she chose to “buy now” then (s)he will receive

the “buy now” payment, $50, immediately. If (s)he chose to “wait for the markdown” then (s)he

would come again to see the experimenter in three weeks to learn about the product availability

(determined by whether a U[1,100] random integer is less or equal to q) which will in turn determine

her payoff: zero if the product is unavailable, or 250− 200× (1− d)∈ [$60,$200].

As per the instructions, two subjects were randomly selected, ID49 (male) with d = 25% and

q = 50%, and ID11 (female) with d= 25% and q = 80%. ID49’s response to the q = 50% question

in the d= 25% choice-list was to “buy now” thus he was awarded $50 and left. ID11’s response to

the q = 80% question in the d= 25% choice-list was to “wait for the markdown” thus she left the

experiment with no payment, but in three weeks came again to see the experimenter. The drawn

random number was 15 ≤ 80 ≡ (her q), which meant that the product was available. Thus she

“bought it” for $200*(1-.25)=$150 and immediately resold to the experimenter for the surplus of

$100. That concluded our experiment.

6.3 Structure of the Data and Initial Checks

The experimental data consists of the series of wait-or-buy decisions that subjects made for different

(d, q) combinations. However, within each choice-list such data are not independent, particularly

if the choice-lists reveal the indifference points17. An indifference point would imply that within

each choice-list as q’s increase, subjects switch from selecting “buy” for low q’s to selecting “wait”

for high q’s, and they do so only once (i.e., do not switch back to “buy” at even higher q’s). Then

somewhere between the highest “buy” q and the lowest “wait” q is the probability at which, for

that specific d, the subject is indifferent between buying and waiting.

17 The ability to reveal an indifference point is an advantage of choice lists over the binary choice. The choice lists
are designed to cover enough possibilities to reveal an indifference point
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Our data shows overwhelming support for the existence of indifference points: 62/64 subjects

exhibited such an indifference-point pattern in all choice-lists, one subject switched more than once

in a single choice-list, and one subject, ID56, exhibited the behaviour that is largely inconsistent

with the notion of indifference point. We believe that (s)he mis-understood the task; this is further

supported by the consistency analysis that follows. Thus we removed subject all subject ID56 data,

and for for the rest defined indifference points as the mid-value between the highest “buy” q and

the lowest “wait” q. Whenever a choice-list had all “buys” the indifference points was defined as

95%, and conversely, in a choice-list with all “waits” the indifference point was defined at 5% – in

both cases these are the mid-points between the corresponding subject’s answer and the boundary

of the [0,1] interval for probabilities. This led to 315 indifference points. We note that mid-point

indifference points were also used in Holt and Laury (2002) and Bodily and Pfeifer (2010).

The binary choice data were used to verify within-subject consistency by comparing the wait-or-

buy decision made in a binary-choice question to the corresponding decision made in the respective

choice-list. This analysis also reveals formidable consistency: 67% of our subjects were consistent

in all decisions, 23% of subjects were consistent in all but one choice, and only one subject, the

familiar ID56, was inconsistent in more than three. That supported our decision to exclude his/her

data from the analysis. The remainder is a set of highly consistent wait-or-buy data on 63 usable

subjects, which we next use to estimate the parameters of our consumer utility model.

6.4 Parameter Estimation

Given the structure of our data we designed the estimation procedure so as to minimize the

deviations between the observed and implied indifference points. Note that we purposefully did not

use a somewhat more intuitive maximum likelihood estimation for the binary choice data, because

the existence of the indifference points for most subjects implies that many of the binary choice

data points are not independent. Indeed, if for d= 25% one’s indifference point is q= 65%, then the

only two independent binary choice data points are a “buy” for d= 25%, q= 60% and a “wait” for

d= 25%, q= 70%: all data points with q < 60% will have a “buy” decision, and those with q > 70%

will have a “wait”.

The choice-list data consists of a set of indifference pairs in the form of (d̃ij, q̃ij), where d̃ is the

observed discount value and q̃ is the imputed indifference probability value as explained above, j

is the index for the subject, and i is the index for the observation. In the context of our model,

indifference between buying and waiting given a (d, q) pair and model parameters β,µ, ρ implies

u− p= (u− p(1− d)) exp

[
−
(

ln
1

q
+ ρeµ(d0−d)t

)β]
. (14)
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Figure 3 Observed, q̃ij and implied q(d̃ij) indifference probabilities.

Since the expression on the left is independent of q and the expression on the right is a monotone

function of q, for any d there exists the implied q(d) for which equation (14) holds. Solving for q(d)

and rearranging we obtain that:

q(d)≡ q(d)|β,µ = exp

{
−
(
− ln

(
u− p

u− p(1− d)

)) 1
β

+ ρeµ(d0−d)t

}
. (15)

Figure 3 presents the observed indifference probabilities for different discounts; the size of the

bubble is proportional to the number of subjects with the same (d̃ij, q̃ij) combination. The Figure

also presents the implied q(d) values for the optimal fit. Finally, it highlights an important obser-

vation that motivates how we fit our model to this data: the data points (and hence the resultant

errors in the estimation) are censored. Indeed, since the indifference probability cannot be larger

than 100% or smaller than zero, for small discounts the estimated errors will be censored on the

left, and for large discounts, on the right. As argued by Powell (1984), in a situation with censored

observations and errors, the least-absolute-deviation (LAD) criterion is more appropriate than the

standard least-squares (LS) estimation. Thus we measure the goodness-of-fit between the implied

and observed probabilities for a given discount and model parameters by the absolute difference:

LADij(·)|β,µ = |(q̃ij − q(·)) |β,µ| . (16)

We select the parameters of the pooled model such that to minimize the total LAD over all

subjects and lists, i.e., by solving the following optimization model:

min
β,µ

[∑
i,j

LADij(d̃ij)|β,µ

]
.

Individual models can be similarly defined for each subject j by taking a sum over i only.

Note that similarly to how least squares regression is interpreted as a conditional mean, the LAD

regression is interpreted as a conditional median (Powell 1984). As per the prior literature, we

constrained µ ≥ 0 and β ∈ [0,1]. The estimation was performed in VBA using the multi-start

generalized-reduced-gradient (GRG) engine in the Premium Solver Platform.
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6.5 Estimation Results

Figure 4 presents the estimated β and µ parameters. Each of the 63 ×’s on Figure 4 represents

the estimated individual βj, µj pair using the LAD method based with the choice-list data18. The

circle is the mean of those individual estimates, β = 0.73, µ= 2.17, and the square is the median of

individual estimates: β = 0.91, µ= 1.50.

Figure 4 Estimates of consumer utility parameters β and µ.

The triangle on Figure 4 represents the pooled LAD estimate: β = 0.9, µ= 1.95. The error bars

correspond to two standard deviations (errors) for the corresponding estimated parameter. Given

that our model is highly-nonlinear, and hence its error structure is unclear, we calculated standard

errors by bootstrapping (the jackknife approach was used, Efron (1979), Boos and Stefanski (2013),

Chapter 10). The estimated errors are 0.015 for β and 0.162 for µ. It is thus evident that the

subjects significantly deviated from the fully rational estimates (β = 1, µ= 0).

Two additional observations are evident from the Figure. First, the pooled estimate and the

median of individual estimates are remarkably consistent. The mean is slightly off, which is not

surprising given that the parameters are censored at β = 1. Second, the total degree of irrationality,

the distance from the βj = 1, µj = 0 corner, seems to be somewhat similar for many subjects, but

for some it reveals in being irrational with respect to the non-linearity in psychological distance,

while for others with respect to sensitivity to the magnitude of the discount (subendurance).

To conclude the experimental part of our paper, we designed and executed an experiment to

measure parameters of the consumer value function in our model. The estimated sensitivity to

psychological distance parameter β ≈ 0.9, and the sensitivity to discount magnitude µ ≈ 1.95.

18 For 7/63 subjects the individual estimate is βj = 1, µj = 0 (the lower left corner of the Figure), i.e., that consistent
with the fully rational expected utility behavior. Generally, 23/63 subjects have estimated βj = 1, i.e., the constraint
on β was binding. It is worth noting that allowing β > 1, the average β = 0.99 and for 53/63 subjects βj < 1.3.
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Figure 5 Experimental results and optimal pricing: (a) Optimal discount, (b) Optimal revenue, (c) Revenue gain

from incorporating the dPTT behavior as a function of β and µ.

× - individual estimates, N - pooled estimate.

Parameters of the pricing model: Q= 0.625, ph = 0.5, t= 3, λ= 1, u∼Unif[0,1], d0 = 0.5 and ρ= 0.13.

Despite the substantial heterogeneity in the individual estimates, the remarkable consistency of

the median and pooled estimates suggests that the estimated parameters are quite robust.

6.6 Optimal Markdowns with the Estimated Parameters

Figure 5 summarizes the combination of our numerical exploration and experimental calibration.

Recall that the optimal DEU discount is 16%. If β = 0.9, µ = 1.95 (pooled LAD estimate), the

optimal dPTT discount is 22%. Compared to the DEU optimum, implementing dPTT pricing

increases revenue by 1.0% in this case. If β = 0.73, µ= 2.17 (individual LAD mean) the optimal

discount is 24% and the revenue lift is 1.4%. Observe further that the optimal discount set at the

inventory clearing level (25%) is applicable to a wide range of (β,µ) combinations. In fact, it is

optimal for 56% of the subjects (35 out of 63). In that sense, the optimality of dPTT pricing is

robust with respect to parameters describing anomalies in consumer behavior.

Figure 6 gives insight to the larger discounts and highlights the relative contributions of the

decreasing sensitivity to psychological distance and subendurance to the optimal markdown. It

plots the marginal benefit of increasing markdown d (i.e., selling an extra item subject to inventory

constraint) vs. the marginal cost associated with larger d (i.e., lower markdown price and switching

from tag price to markdown purchases).

The optimal markdown balances the marginal benefit with the marginal cost. The marginal

benefit is linear decreasing in d; it is the same for both models and drops to zero at d= 0.25 due to

the inventory constraint. The marginal cost is increasing in d for both models and in fact is linear

for DEU. Observe that in all cases on Figure 6 the revenue under DEU (dashed line at the top) is

maximized when the two bold lines intersect: the marginal cost = marginal benefit logic.
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Figure 6 dPTT drivers of optimal markdown for (a) β = 0.9, µ= 1.95; (b) β = 0.73, µ= 2.17; (c) β = 0.25, µ= 1.

Parameters of the pricing model: Q= 0.625, ph = 0.5, t= 3, λ= 1, u∼Unif[0,1], d0 = 0.5 and ρ= 0.13.

Under the dPTT the marginal cost is non-linear. An immediate observation is that the marginal

cost is smaller under dPTT hence it intersects the marginal benefit line at a higher discount. Setting

β = 1 isolates the subendurance effect, and µ = 0 isolates the effect of decreasing sensitivity to

psychological distance. At the estimated median or mean parameters the larger markdown result

is driven mostly by subendurance, see Figures (a) and (b). But at (β,µ) = (0.25,1) (there are 5

subjects in that neighborhood, Figure 4), the effect is driven mostly by decreasing sensitivity to

the psychological distance, see Figure (c).

7. Conclusions

The importance of markdown management to modern retailers is hardly of a question: nearly 1/3

of unit sales and 1/5 of dollar sales are generated at markdowns (Smith and Achabal 1998, Agrawal

and Smith 2009). Further, with retailers’ net profit margins being approximately 3%, each percent

of extra markdown revenue translates into major profit increases. The proliferation of markdowns,

however, fueled strategic waiting: effectively every time a consumer enters the store (s)he mentally

“solves” a wait-or-buy problem – should (s)he buy the item now or wait for a possible markdown.

Being aware of the behavioral regularities surrounding this decision, and incorporating them into

markdown management offers substantial revenue opportunity for retailers.

In is paper we study this fundamental wait-or-buy problem from a unique, behavioral, per-

spective. The core idea of our study is that the wait-or-buy decision reflects a multi-dimensional

trade-off between the delay in getting an item, the likelihood of getting it, and the magnitude of

the price discount. Multiple studies in the decision analysis, psychology and behavioral economics,

showed that all these trade-offs are prone to behavioral irregularities by which human decision

makers deviate from the discounted expected utility model used in the current literature.
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We present behavioral preference foundations (axioms) that support a modification of the dis-

counted utility model. Our axioms capture three behavioral anomalies widely documented in lab-

oratory experiments, namely, the common ratio effect in risk perception, the common difference

effect in time perception (a.k.a. hyperbolic discounting), and the magnitude effect in time dis-

counting (a.k.a. subendurance). Key in our formulation is the concept of psychological distance.

The result is a parsimonious modification of the discounted expected utility. We solve the con-

sumer’s wait-or-buy problem and embed it into the firm’s markdown optimization problem. We

calibrate the model parameters using experimental data and show that accounting for the behav-

ioral anomalies results in substantially larger markdowns that the current literature suggests and

leads to noticeable revenue gains.
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Appendix
Experimental Instructions

You are about to participate in an experiment in the economics of decision-making. There are

no right or wrong answers; just express your preferences. By doing so you can earn a substantial

amount of money that will be paid to you as is explained below. If you have a question at any

time, please raise your hand and the experimenter will answer it; do not talk with one another for

the duration of the experiment.

Overview of the experiment

The context of the experiment is the following:

Wait or Buy? Suppose that you went to a retail store and saw a product that you

know you can resell for $250 at any time. The product was priced at $200 (two hundred

dollars), so you picked the product from the shelf and were about to purchase. However,

then you started thinking that in three weeks from today this product may be marked

down. Thus the question was: should you buy the product now or wait for the markdown?

As you entered the room you selected a sealed envelope. Do not open the envelope until the end

of the experiment. The envelope contains two numbers: (1) the markdown percentage and the (2)

likelihood that the product will be available when you visit the store again in three weeks. Either

number could vary between 5% and 90%. As of yet, you do not know which two numbers are inside

your envelop.

With the help of the experimental interface (see the screenshot and the link on the next page) you

will give the experimenter the instructions whether you would like to buy the product now or wait

for three weeks until the markdown for each possible combination of the markdown percentage and

the likelihood of availability that could be inside your envelope. You will first be asked 5 questions,

each containing a single markdown percentage and 9 different likelihoods of availability. Your

answers to those questions will determine your pay. We will then ask you 6 additional questions each

containing a single markdown percentage and a single likelihood of availability just to double-check

your answers.

How you will be paid

At the minimum you will be paid $5 just for participation in this experiment. At the maximum

you can earn over $200. We will determine how much you will earn as follows. At the end of the
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experiment today we will randomly select two participants. These selected participants will stay

with the experimenter to complete the process; everyone else will collect their $5 and leave.

The experimenter (we) and each selected participant (you) will in private complete the following

procedure. First, we will then open your envelope and find out your markdown percentage and

the likelihood of availability. Second, we will look-up the Wait-or-Buy choice you made during the

experiment for that specific markdown percentage and likelihood of availability.

• If your choice was Buy now then you will buy the product for $200 and immediately resell it

to the experimenter for $250, keeping the remaining $250 - 200 = $50.

• If your choice was Wait for the markdown then in three weeks (i.e., on April 23, 2014) you

will have to stop by Prof. [Removed by the authors for confidentiality] office to learn about the

product availability.

— Product availability will be determined by drawing a random number between 1 and 100

(all numbers being equally likely) and comparing it to the likelihood of availability from your

envelope. If the random number is less or equal to the likelihood from the envelope, the product

will be determined to be “available” and otherwise “unavailable”.

— If the product is available, then its price will be adjusted according to the markdown

percentage from your envelope, you will pay the adjusted price, immediately resell the product

to the experimenter for $250 and will keep the rest of the monies. For example, if the markdown

percentage is 50% then the adjusted price will be $200 X 50% = $100, and after re-selling the

product you will keep the remaining $250 100 = $150.

— If the product is unavailable, then you will have nothing to resell and thus there will be no

additional money.

All moneys will be paid to you in cash. All decisions and earnings are confidential.

Screenshot of the experimental interface

[Removed by the authors to save space; it is identical to Figure 7 (a) except that the actual

markdown percentage was replaced with XX to ensure that all values receive equal amount of

subjects attention.]

Link: [Removed by the authors for confidentiality.]
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(a)

(b)
Figure 7 Screenshots for the choice-list (a) and binary choice (b) questions.

Proofs

Proof of Proposition 1. It is routine to verify that V satisfies A1-A8. For the converse, we

have that A1 implies that, for some arbitrary a ∈ R, preferences are represented by a continuous

function, Vτ (a− p, d, q, t). A2 implies that Vτ (x) = V0(t− τ,x−t). Hence, suffices to determine V0.

In A3.u, u> 0 does not depend on x and we set a= u.

By A5-A6 (Baucells and Heukamp 2012, Thm. 1) and A4, respectively,

V0(u− p, d, q, t) = V0(u− p, d, qe−r(d)t,0) = V0(u− p(1− d),0, qe−r(d)t,0).

We apply A3.0 to conclude that V0 takes constant value if either u− p(1− d) = 0 or qe−r(d)t = 0,



Baucells, Osadchiy, Ovchinnikov: Behavioral Anomalies in Wait-or-Buy Decisions 35

and normalize Vτ (0τ ) = 0, τ ≥ 0. By A3.p and A3.q, V0 is strictly increasing in the first and third

components. By A8 (Baucells and Heukamp 2012, Thm. 2), applies separately to gains and losses,

V0(u− p(1− d),0, qe−r(d)t,0) =

{
v(u− p(1− d)) w+(qe−r(d)t), u− p(1− d)≥ 0

v(u− p(1− d)) w−(qe−r(d)t), u− p(1− d)< 0.

Combining the equalities and letting s+(σ) = − lnw+(e−σ) and s−(σ) = − lnw−(e−σ) yields (2).

Remains to show that s+ and s− are concave.

For any choice of σ≥ 0, σ′, σ′′ > 0, let t= 0, q= e−σ, θ= e−σ
′
, and q′ = qe−σ

′′
. Given are u, p, and

d. If u− p(1− d)> 0, then find p′ ∈ (p,u/(1− d)) such that (p′, d, q,0)∼ (p, d, qθ,0), or s(σ+σ′)−

s(σ) = ln v(u−p(1−d))

v(u−p′(1−d))
. If A7 holds, then (p′, d, q′,0) � (p, d, q′θ,0), or s(σ + σ′ + σ′′)− s(σ + σ′′) ≤

ln v(u−p(1−d))

v(u−p′(1−d))
. Combining the two results yields s+(σ+σ′+σ′′)− s+(σ+σ′′)≤ s+(σ+σ′)− s(σ).

If u − p(1 − d) < 0, then find p′ ∈ (0, p) such that (p′, d, q,0) ∼ (p, d, qθ,0), or s(σ + σ′) −

s(σ) = ln v(u−p(1−d))

v(u−p′(1−d))
. If A7 holds, then (p′, d, q′,0) � (p, d, q′θ,0), or s(σ + σ′ + σ′′)− s(σ + σ′′) ≤

ln v(u−p(1−d))

v(u−p′(1−d))
. Combining the two results yields s−(σ+σ′+σ′′)−s−(σ+σ′′)≤ s−(σ+σ′)−s(σ). �

Proof of Proposition 2. A3.d. By A6, if d> dx, then r(d)≤ r(dx). We have that

(d,x−d) = (px, d, qx, tx)∼A5 (px, d, qxe
−r(d)tx ,0)∼A4 (px(1− d),0, qxe

−r(d)tx ,0)

�A3.p (px(1− dx),0, qxe−r(d)tx ,0)�A3.q (px(1− dx),0, qxe−r(dx)tx ,0)

∼A4 (px, dx, qxe
−r(dx)tx ,0)∼A5 (px, dx, qx, tx) = x.

That higher discounts are better also holds for x≺ 0 with tx = 0. It also holds for all x, provided

(d,x−d)� 0. It may fail if tx > 0 and (d,x−d)≺ 0: increasing a bit the price discount of an unattrac-

tive item could make the future purchase even less attractive because the future loss becomes more

salient.

A7.t. Let x ∼ y � 0 with tx ≥ ty, dx ≥ dy, and qx = qy = q. Note that θ′ = e−r(dx)(tx−ty) solves

x∼ (ty, θ
′q,x−tq). Given ∆≥ 0 in A7.t, let θ= e−r(dy)∆ solve y∼ (ty + ∆, θq, y−tq). Because r(dx)≤

r(dy), we have that e−[r(dy)−r(dx)]∆ ≤ 1. Applying A7.p to y and (ty, θ
′q,x−tq), produces

(θq, y−q)� (ty, θ
′θq,x−tq).

By A5, the left prospect is indifferent to (ty + ∆, q, y−qt). By A5 (twice), the right prospect is

indifferent to both (tx, θq, x−tq) and (tx + ∆, e−[r(dy)−r(dx)]∆q,x−tq). This, and A3.q, implies

(ty + ∆, y−t)� (tx + ∆, e−[r(dy)−r(dx)]∆q,x−tq)� (tx + ∆, x−t).

For x∼ y ≺ 0, we repeat the same construction except that A7.p yields (θq, y−q)� (ty, θ
′θq,x−tq),

and e−[r(dy)−r(dx)]∆ ≤ 1 implies (tx + ∆, e−[r(dy)−r(dx)]∆q,x−tq)� (tx + ∆, x−t). Hence, A7.t follows.

�
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Proof of Proposition 3. If x∈X 0, then qxe
−tx = 0, qxe

−txeτ = 0, and (tx−τ,x−t)∈X 0. Hence,

(tx− τ,x−t)∼0 0. By A2, x∼τ 0τ .

x�0 0 and A3.t implies (tx− τ,x−t)�0 x. By A2, (tx− τ,x−t)�0 0 implies (tx, x−t)�τ 0τ .

x≺0 0 and A3.t implies (tx− τ,x−t)≺0 x. By A2, (tx− τ,x−t)≺0 0 implies (tx, x−t)≺τ 0τ .

Once the consumer learns at time t that the product is available, the prospect (p, d′, q, t) becomes

(p, d′,1, t). By A4pd, A3.p, and our premise, respectively,

(p, d′,1,0)∼0 (p(1− d′),0,1,0)�0 (p(1− d),0,1,0)�0 (p, d,1,0)�0 0.

By time invariance, if (p, d′,1,0)�0 0, then (p, d′,1, t)�t 0t. �

Proof of Proposition 4. By definition, the best response threshold is equal to B(H) = 1 if

V0(p, d, q2, t)≥ V0(p,0, q1,0) for all u∈ [p,1]. Otherwise is given by the value of u that makes ‘wait’

and ‘buy now’ indifferent, i.e., the solution to V0(p, d, q2, t) = V0(p,0, q1,0). Solving for u yields the

expression inside the bracket of (7).

To see that B(H) is increasing in H, we distinguish three cases.

• If Q≤ λ1, then q1 =Q/λ1, q2 = 0, B(H) = p, and B′(H) = 0.

• If Q≥ λ1 +λ2, then q1 = q2 = 1, dq1/dH = dq2/dH = 0 and B′(H) = 0.

• If Q∈ (λ1, λ1 +λ2), then q1 = 1, q2 = (Q−λ1)/λ2 ∈ (0,1),

∂B(H)

∂q2

= pd
s′ (ln1/q2 + r(d)t)e−s(ln 1/q2+r(d)t)

q2[1− e−s(ln 1/q2+r(d)t)]2
> 0,

dq2

dH
= (λ2 +λ1−Q)f(H)λ/λ2

2 > 0, (17)

and B′(H) = ∂B(H)/∂q2 · dq2/dH > 0.

Note that Q≤ λ1 is equivalent to H ≤ F−1 (max{λ−Q,0}/λ,0) and equivalent to q2 = 0. Note also

that λ1 +λ2 = λF̄ (p(1− d)), which is independent of H. �

Proof of Proposition 5. Suppose consumers play H ∈ [p,1].

Regime I. Consumers enter the market if and only if u≥ p(1−d). Hence, λF̄ (p(1−d)) = λ1 +λ2

is the number of consumers that enter. If Q>λ1 +λ2, then all consumers purchase with probability

one. Plugging q1 = q2 = 1 into (7) and using s(0) = 0 yields B(H) equal to (8). Clerarly, H∗ =B(H)

is the unique solution to H∗ =B(H∗). We verify that B(H)∈ (p,1].

Regime II. Because Q>λF̄ (p) and H ≥ p, it follows that F̄ (H)≤ F̄ (p) and Q>λF̄ (H) = λ1.

Thus, all consumers in period 1 are served, and the quantity available in period 2 is Q−λ1 > 0. That

Q<λF̄ (p(1−d)) implies Q−λ1 <λF̄ (p(1−d))−λ1 = λ2. It follows that q2 = (Q−λ1)/λ2 ∈ (0,1).

That q2 > 0 implies B(H)> p and H∗ > p.
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Regime III. Suppose consumers play according to H = p. Then q1 = Q
λF̄ (p)

< 1 and q2 = 0. For

u< p, the best response does not depend on H (consumers with p(1− d)≤ u< p will surely wait).

For u≥ p, the value of the buy-now option is non-negative because q1 ≥ 0, whereas the value of the

wait option is strictly zero because q2 = 0. Thus, ‘buy now’ is best and R(p) = p.

To show that H∗ = p is the only equilibrium with q1 < 1, assume there is an equilibrium with

H∗ > p and q∗1 < 1. This implies Q< λ1 and q∗2 = 0. For u ∈ [p,H), equilibrium specifies to ‘wait’,

but ‘buy now’ is better because V0(p,0, q1,0)>V0(p, d,0, t) = 0, a contradiction. �

Proof of Proposition 6. We show that all consumers are weakly better off under H.

• Consumers with u ∈ [H,1] always choose ‘buy now’. In regime II they obtain the item with

q1 = 1 and are equally off. Under regime III they are weakly better off under H because H ′ may

be equal to p and exhibit q′1 < 1, whereas H is surely higher than p and necessarily yields q1 = 1.

• Consumers with u ∈ [H ′,H) would choose ‘buy-now’ under H ′ because V0(p,0,1,0) ≥

V0(p, d, q′2, t); and choose ‘wait’ under H because V0(p, d, q2, t)> V0(p,0,1,0). The latter condition

also indicates that they are better off under H than under H ′.

• Consumer with u ∈ [p(1− d),H ′] always choose ‘wait’, but obtain a larger payoff in the equi-

librium with highest value of q2, which is H.

• Consumers with u< p(1− d) would choose ‘opt-out’ in both equilibrium and are equally off.

Hence, H Pareto-dominates H ′. It follows that if the equilibrium with highest q2 also has the

highest H, then this equilibrium is Pareto-dominant. �

Proof of Proposition 7. We prove a more general version of the result using the general dPTT

formulation with r(d) = ρ= const. Note r(d) = const corresponds to µ= 0 in (3). Recall that DEU

is a special case of dPTT with s(σ) = σ, and r(d) = const.

Suppose (and verify later) that Q > λ
(
1− 1

2
p(1 + e−ρt)

)
implies no rationing at the optimal

discount, i.e., q1 = q2 = 1. Then

RDEU = λp
(
1−F (HDEU) + (1− d)(F (HDEU)−F (p(1− d)))

)
= λp(1−HDEU +(1−d)(HDEU−p(1−d))).

First order optimality condition:

∂RDEU

∂d
= 0, or HDEU + d

∂HDEU

∂d
+ 2p(d− 1) = 0,

where HDEU = p 1−(1−d)e−σ

1−e−σ , σ= ρt, and ∂HDEU

∂d
= p e−σ

1−e−σ .

Therefore:
1− (1− d)e−σ

1− e−σ
+ d

e−σ

1− e−σ
+ 2(d− 1) = 0,
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1 +
2de−σ

1− e−σ
+ 2d− 2 = 0, or d

M
= dDEU =

1

2

(
1− e−σ

)
.

At the optimal discount level dDEU , the cumulative demand over two periods is λ(1− p(1− d)) =

λ
(
1− 1

2
p(1 + e−σ)

)
, σ = ρt, hence condition of the proposition verifies that there is indeed no

rationing.

Consider the dPTT case. The derivative of the revenue function:

∂RdPTT

∂d
=−∂(dHdPTT )

∂d
− 2p(d− 1),

where HdPTT = p 1−(1−d)e−s(σ)

1−e−s(σ) . Substituting ∂(dHdPTT )

∂d
= p

1−e−s(σ)

(
1− e−s(σ)(1− 2d)

)
, obtain

∂RdPTT

∂d
=

p

1− e−s(σ)

(
e−s(σ)(1− 2d)− 1

)
− 2p(d− 1).

At d= dDEU :

∂RdPTT

∂d
|d=dDEU =

p

1− e−s(σ)

(
e−s(σ)e−σ − 1

)
+ p(1 + e−σ)

=
p

1− e−s(σ)

(
e−s(σ)e−σ − 1 + (1 + e−σ)(1− e−s(σ))

)
=

p

1− e−s(σ)

(
e−σ − e−s(σ)

)
> 0 if s(σ)>σ.

Since σ= ρt < 1, s – concave with s(0) = 0 and s(1) = 1, s(σ)>σ �.


